36 research outputs found

    A rational engineering strategy for designing protein a-binding camelid single-domain antibodies

    Get PDF
    Staphylococcal protein A (SpA) and streptococcal protein G (SpG) affinity chromatography are the gold standards for purifying monoclonal antibodies (mAbs) in therapeutic applications. However, camelid VHH single-domain Abs (sdAbs or VHHs) are not bound by SpG and only sporadically bound by SpA. Currently, VHHs require affinity tag-based purification, which limits their therapeutic potential and adds considerable complexity and cost to their production. Here we describe a simple and rapid mutagenesis-based approach designed to confer SpA binding upon a priori non-SpA-binding VHHs. We show that SpA binding of VHHs is determined primarily by the same set of residues as in human mAbs, albeit with an unexpected degree of tolerance to substitutions at certain core and non-core positions and some limited dependence on at least one residue outside the SpA interface, and that SpA binding could be successfully introduced into five VHHs against three different targets with no adverse effects on expression yield or antigen binding. Next-generation sequencing of llama, alpaca and dromedary VHH repertoires suggested that species differences in SpA binding may result from frequency variation in specific deleterious polymorphisms, especially Ile57. Thus, the SpA binding phenotype of camelid VHHs can be easily modulated to take advantage of tag-less purification techniques, although the frequency with which this is required may depend on the source species

    Toxin-Specific Antibodies for the Treatment of Clostridium difficile: Current Status and Future Perspectives †

    Get PDF
    Therapeutic agents targeting bacterial virulence factors are gaining interest as non-antibiotic alternatives for the treatment of infectious diseases. Clostridium difficile is a Gram-positive pathogen that produces two primary virulence factors, enterotoxins A and B (TcdA and TcdB), which are responsible for Clostridium difficile-associated disease (CDAD) and are targets for CDAD therapy. Antibodies specific for TcdA and TcdB have been shown to effectively treat CDAD and prevent disease relapse in animal models and in humans. This review summarizes the various toxin-specific antibody formats and strategies under development, and discusses future directions for CDAD immunotherapy, including the use of engineered antibody fragments with robust biophysical properties for systemic and oral delivery

    Multivalent Anchoring and Oriented Display of Single-Domain Antibodies on Cellulose

    Get PDF
    Antibody engineering has allowed for the rapid generation of binding agents against virtually any antigen of interest, predominantly for therapeutic applications. Considerably less attention has been given to the development of diagnostic reagents and biosensors using engineered antibodies. Recently, we produced a novel pentavalent bispecific antibody (i.e., decabody) by pentamerizing two single-domain antibodies (sdAbs) through the verotoxin B subunit (VTB) and found both fusion partners to be functional. Using a similar approach, we have engineered a bispecific pentameric fusion protein consisting of five sdAbs and five cellulose-binding modules (CBMs) linked via VTB. To find an optimal design format, we constructed six bispecific pentamers consisting of three different CBMs, fused to the Staphylococcus aureus-specific human sdAb HVHP428, in both orientations. One bispecific pentamer, containing an N-terminal CBM9 and C-terminal HVHP428, was soluble, non-aggregating, and did not degrade upon storage at 4 °C for over six months. This molecule was dually functional as it bound to cellulose-based filters as well as S. aureus cells. When impregnated in cellulose filters, the bispecific pentamer recognized S. aureus cells in a flow-through detection assay. The ability of pentamerized CBMs to bind cellulose may form the basis of an immobilization platform for multivalent display of high-avidity binding reagents on cellulosic filters for sensing of pathogens, biomarkers and environmental pollutants

    Engineered Single-Domain Antibodies with High Protease Resistance and Thermal Stability

    Get PDF
    The extreme pH and protease-rich environment of the upper gastrointestinal tract is a major obstacle facing orally-administered protein therapeutics, including antibodies. Through protein engineering, several Clostridium difficile toxin A-specific heavy chain antibody variable domains (VHHs) were expressed with an additional disulfide bond by introducing Ala/Gly54Cys and Ile78Cys mutations. Mutant antibodies were compared to their wild-type counterparts with respect to expression yield, non-aggregation status, affinity for toxin A, circular dichroism (CD) structural signatures, thermal stability, protease resistance, and toxin A-neutralizing capacity. The mutant VHHs were found to be well expressed, although with lower yields compared to wild-type counterparts, were non-aggregating monomers, retained low nM affinity for toxin A, albeit the majority showed somewhat reduced affinity compared to wild-type counterparts, and were capable of in vitro toxin A neutralization in cell-based assays. Far-UV and near-UV CD spectroscopy consistently showed shifts in peak intensity and selective peak minima for wild-type and mutant VHH pairs; however, the overall CD profile remained very similar. A significant increase in the thermal unfolding midpoint temperature was observed for all mutants at both neutral and acidic pH. Digestion of the VHHs with the major gastrointestinal proteases, at biologically relevant concentrations, revealed a significant increase in pepsin resistance for all mutants and an increase in chymotrypsin resistance for the majority of mutants. Mutant VHH trypsin resistance was similar to that of wild-type VHHs, although the trypsin resistance of one VHH mutant was significantly reduced. Therefore, the introduction of a second disulfide bond in the hydrophobic core not only increases VHH thermal stability at neutral pH, as previously shown, but also represents a generic strategy to increase VHH stability at low pH and impart protease resistance, with only minor perturbations in target binding affinities. These are all desirable characteristics for the design of protein-based oral therapeutics

    Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing

    No full text
    Antibodies that cross-react with multiple isoforms or homologue of a given protein are often desirable, especially in therapeutic applications. Here, we report the identification of several unique, clonally unrelated, single-domain antibodies (sdAbs) that bind to multiple serum albumin orthologues (human, rhesus, rat and mouse) with low-to-medium nanomolar affinity from a llama immunized only with human serum albumin. Using single-round panning of a phage-displayed sdAb library against serum albumins and next-generation DNA sequencing, we were able to predict patterns of sdAb reactivity to the albumins of different species with 3c90% accuracy. We expect this strategy to be generally applicable for identifying cross-reactive sdAbs, particularly when these exist at low frequency and/or are poorly enriched by panning. Moreover, the sdAbs identified here are of potential interest for serum half-life extension of biologics.Peer reviewed: YesNRC publication: Ye

    Mutational approaches to improve the biophysical properties of human single-domain antibodies

    No full text
    Monoclonal antibodies are a remarkably successful class of therapeutics used to treat a wide range of indications. There has been growing interest in smaller antibody fragments such as Fabs, scFvs and domain antibodies in recent years. In particular, the development of human VH and VL single-domain antibody therapeutics, as stand-alone affinity reagents or as "warheads" for larger molecules, are favored over other sources of antibodies due to their perceived lack of immunogenicity in humans. However, unlike camelid heavy-chain antibody variable domains (VHHs) which almost unanimously resist aggregation and are highly stable, human VHs and VLs are prone to aggregation and exhibit poor solubility. Approaches to reduce VH and VL aggregation and increase solubility are therefore very active areas of research within the antibody engineering community. Here we extensively chronicle the various mutational approaches that have been applied to human VHs and VLs to improve their biophysical properties such as expression yield, thermal stability, reversible unfolding and aggregation resistance. In addition, we describe stages of the VH and VL development process where these mutations could best be implemented. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.Peer reviewed: YesNRC publication: Ye

    Isolation and characterization of camelid single-domain antibodies against HER2

    No full text
    Abstract Objective To isolate and characterize novel high-affinity llama single-domain antibodies against human HER2. Results We immunized a llama with human HER2, constructed a phage-displayed VHH library from the lymphocytes of the animal, and isolated six unique HER2-specific VHHs by panning. All six VHHs were unique at the amino acid level and were clonally unrelated, as reflected by their distinct CDR3 lengths. All six VHHs recognized recombinant human HER2 ectodomain with monovalent affinities ranging from 1 to 51 nM, had comparable affinities for cynomolgus monkey HER2, and bound HER2+ SKOV3 cells by flow cytometry. Three of the VHHs recognized recombinant murine HER2 with no loss of affinity compared with human and cynomolgus monkey HER2. The VHHs recognized three major epitopes on HER2 (including one conserved across the human, simian and murine orthologues), all of which were distinct from that of trastuzumab. These VHHs may be useful in the design of modular cancer immunotherapeutics

    Application of Assisted Design of Antibody and Protein Therapeutics (ADAPT) improves efficacy of a Clostridium difficile toxin A single-domain antibody

    No full text
    Abstract Assisted Design of Antibody and Protein Therapeutics (ADAPT) is an affinity maturation platform interleaving predictions and testing that was previously validated on monoclonal antibodies (mAbs). This study expands the applicability of ADAPT to single-domain antibodies (sdAbs), a promising class of recombinant antibody-based biologics. As a test case, we used the camelid sdAb A26.8, a VHH that binds Clostridium difficile toxin A (TcdA) relatively weakly but displays a reasonable level of TcdA neutralization. ADAPT-guided A26.8 affinity maturation resulted in an improvement of one order of magnitude by point mutations only, reaching an equilibrium dissociation constant (K D) of 2 nM, with the best binding mutants having similar or improved stabilities relative to the parent sdAb. This affinity improvement generated a 6-fold enhancement of efficacy at the cellular level; the A26.8 double-mutant T56R,T103R neutralizes TcdA cytotoxicity with an IC50 of 12 nM. The designed mutants with increased affinities are predicted to establish novel electrostatic interactions with the antigen. Almost full additivity of mutation effects is observed, except for positively charged residues introduced at adjacent positions. Furthermore, analysis of false-positive predictions points to general directions for improving the ADAPT platform. ADAPT guided the efficacy enhancement of an anti-toxin sdAb, an alternative therapeutic modality for C. difficile
    corecore