101 research outputs found

    Modulation of ligand-heme reactivity by binding pocket residues demonstrated in cytochrome c' over the femtosecond-second temporal range

    Get PDF
    The ability of hemoproteins to discriminate between diatomic molecules, and the subsequent affinity for their chosen ligand, is fundamental to the existence of life. These processes are often controlled by precise structural arrangements in proteins, with heme pocket residues driving reactivity and specificity. One such protein is cytochrome c', which has the ability to bind nitric oxide (NO) and carbon monoxide (CO) on opposite faces of the heme, a property that is shared with soluble guanylate cycle. Like soluble guanylate cyclase, cytochrome c' also excludes O completely from the binding pocket. Previous studies have shown that the NO binding mechanism is regulated by a proximal arginine residue (R124) and a distal leucine residue (L16). Here, we have investigated the roles of these residues in maintaining the affinity for NO in the heme binding environment by using various time-resolved spectroscopy techniques that span the entire femtosecond-second temporal range in the UV-vis spectrum, and the femtosecond-nanosecond range by IR spectroscopy. Our findings indicate that the tightly regulated NO rebinding events following excitation in wild-type cytochrome c' are affected in the R124A variant. In the R124A variant, vibrational and electronic changes extend continuously across all time scales (from fs-s), in contrast to wild-type cytochrome c' and the L16A variant. Based on these findings, we propose a NO (re)binding mechanism for the R124A variant of cytochrome c' that is distinct from that in wild-type cytochrome c'. In the wider context, these findings emphasize the importance of heme pocket architecture in maintaining the reactivity of hemoproteins towards their chosen ligand, and demonstrate the power of spectroscopic probes spanning a wide temporal range. © 2013 FEBS.

    Time-resolved nanosecond fluorescence lifetime imaging and picosecond infrared spectroscopy of combretastatin A-4 in solution and in cellular systems

    Get PDF
    Fluorescence lifetime images of intrinsic fluorescence obtained with two-photon excitation at 630 nm are shown following uptake of a series of E-combretastatins into live cells, including human umbilical vein endothelial cells (HUVECs) that are the target for the anticancer activity of combretastatins. Images show distribution of the compounds within the cell cytoplasm and in structures identified as lipid droplets by comparison with images obtained following Nile red staining of the same cells. The intracellular fluorescent lifetimes are generally longer than in fluid solution as a consequence of the high viscosity of the cellular environment. Following incubation the intracellular concentrations of a fluorinated derivative of E combretastatin A4 in HUVECs are up to between 2 and 3 orders of magnitude higher than the concentration in the surrounding medium. Evidence is presented to indicate that at moderate laser powers (up to 6 mW) it is possible to isomerize up to 25% of the combretastatin within the femtolitre focal volume of the femtosecond laser beam. This suggests that it may be possible to activate the E-combretastatin (with low cellular toxicity) to the Z-isomer with high anticancer drug activity using two-photon irradiation. The isomerization of Z- and E-combretastatins by 266 nm irradiation has been probed by ultrafast time-resolved infrared spectroscopy. Results for the E-isomer show a rapid loss of excess vibrational energy in the excited state with a lifetime of 7 ps, followed by a slower process with a lifetime of 500 ps corresponding to the return to the ground state as also determined from the fluorescence lifetime. In contrast the Z-isomer, whilst also appearing to undergo a rapid cooling of the initial excited state, has a much shorter overall excited state lifetime of 14 ps

    HUNGARIAN EXPERIENCE IN STRUCTURAL DESIGN CODING (HISTORICAL ANTECEDENTS OF EUROCODE-2)

    Get PDF
    This paper gives review of the historical antecedents of Eurocode-2 in Hungary and East Europe. The method of permissible stresses, using uniform safety factor was first changed in 1950 in Hungary by the semi-probabilistic method using partial safety factors. This new method was accepted with some resistance on the part of the leading structural engineers. Nevertheless most of the East-European countries accepted the new method with some political overtones', to be follow the Soviet example. The authors assert in the papaer that due to the economic necessities. Hungary and the other East European countries gained experience with the regulations affording less safety than the EC2, and this offers an interesting set of experience to the West European countries which have intoduced or are introducing the semi-probabilistic procedure. The most significant point all the experience is the recognition that only one part of the parameters in the structural analysis determining safety can be handled statistically. During design the statistically not significant data such as the error of the structural model must also be taken into consideration. Based on the experience, the authors propose an alternative design method

    Uncovering the Early Stages of Domain Melting in Calmodulin With Ultrafast Temperature-Jump Infrared Spectroscopy

    Get PDF
    The signaling protein calmodulin (CaM) undergoes a well-known change in secondary structure upon binding Ca2+, but the structural plasticity of the Ca2+-free apo state is linked to CaM functionality. Variable temperature studies of apo-CaM indicate two structural transitions at 46 and 58 °C that are assigned to melting of the C- and N-terminal domains, respectively, but the molecular mechanism of domain unfolding is unknown. We report temperature-jump time-resolved infrared (IR) spectroscopy experiments designed to target the first steps in the C-terminal domain melting transition of human apo-CaM. A comparison of the nonequilibrium relaxation of apo-CaM with the more thermodynamically stable holo-CaM, with 4 equiv of Ca2+ bound, shows that domain melting of apo-CaM begins on microsecond time scales with α-helix destabilization. These observations enable the assignment of previously reported dynamics of CaM on hundreds of microsecond time scales to thermally activated melting, producing a complete mechanism for thermal unfolding of CaM

    Uncovering the Early Stages of Domain Melting in Calmodulin With Ultrafast Temperature-Jump Infrared Spectroscopy

    Get PDF
    The signaling protein calmodulin (CaM) undergoes a well-known change in secondary structure upon binding Ca2+, but the structural plasticity of the Ca2+-free apo state is linked to CaM functionality. Variable temperature studies of apo-CaM indicate two structural transitions at 46 and 58 °C that are assigned to melting of the C- and N-terminal domains, respectively, but the molecular mechanism of domain unfolding is unknown. We report temperature-jump time-resolved infrared (IR) spectroscopy experiments designed to target the first steps in the C-terminal domain melting transition of human apo-CaM. A comparison of the nonequilibrium relaxation of apo-CaM with the more thermodynamically stable holo-CaM, with 4 equiv of Ca2+ bound, shows that domain melting of apo-CaM begins on microsecond time scales with α-helix destabilization. These observations enable the assignment of previously reported dynamics of CaM on hundreds of microsecond time scales to thermally activated melting, producing a complete mechanism for thermal unfolding of CaM
    corecore