2,945 research outputs found

    Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds

    Full text link
    A novel multi-scale operator for unorganized 3D point clouds is introduced. The Difference of Normals (DoN) provides a computationally efficient, multi-scale approach to processing large unorganized 3D point clouds. The application of DoN in the multi-scale filtering of two different real-world outdoor urban LIDAR scene datasets is quantitatively and qualitatively demonstrated. In both datasets the DoN operator is shown to segment large 3D point clouds into scale-salient clusters, such as cars, people, and lamp posts towards applications in semi-automatic annotation, and as a pre-processing step in automatic object recognition. The application of the operator to segmentation is evaluated on a large public dataset of outdoor LIDAR scenes with ground truth annotations.Comment: To be published in proceedings of 3DIMPVT 201

    Backpack VLBI terminal with subscentimeter capability

    Get PDF
    Backpack portable equipment was developed to measure vector baseline from approximately 1 km to 100 km in length with subcentimeter to few centimeter accuracy. The equipment design features as well as the instrumentation specifications are discussed. It is shown that the unit has the following advantages: it is simple in concept; it is reliable in unattended operation; and it is inexpensive (less than $15,000 per unit)

    Turbulent Vortex Flow Responses at the AB Interface in Rotating Superfluid 3He-B

    Full text link
    In a rotating two-phase sample of 3He-B and magnetic-field stabilized 3He-A the large difference in mutual friction dissipation at 0.20 Tc gives rise to unusual vortex flow responses. We use noninvasive NMR techniques to monitor spin down and spin up of the B-phase superfluid component to a sudden change in the rotation velocity. Compared to measurements at low field with no A-phase, where these responses are laminar in cylindrically symmetric flow, spin down with vortices extending across the AB interface is found to be faster, indicating enhanced dissipation from turbulence. Spin up in turn is slower, owing to rapid annihilation of remanent vortices before the rotation increase. As confirmed by both our NMR signal analysis and vortex filament calculations, these observations are explained by the additional force acting on the B-phase vortex ends at the AB interface.Comment: 6 pages, 6 figure

    Improving the Segmentation of Anatomical Structures in Chest Radiographs using U-Net with an ImageNet Pre-trained Encoder

    Full text link
    Accurate segmentation of anatomical structures in chest radiographs is essential for many computer-aided diagnosis tasks. In this paper we investigate the latest fully-convolutional architectures for the task of multi-class segmentation of the lungs field, heart and clavicles in a chest radiograph. In addition, we explore the influence of using different loss functions in the training process of a neural network for semantic segmentation. We evaluate all models on a common benchmark of 247 X-ray images from the JSRT database and ground-truth segmentation masks from the SCR dataset. Our best performing architecture, is a modified U-Net that benefits from pre-trained encoder weights. This model outperformed the current state-of-the-art methods tested on the same benchmark, with Jaccard overlap scores of 96.1% for lung fields, 90.6% for heart and 85.5% for clavicles.Comment: Presented at the First International Workshop on Thoracic Image Analysis (TIA), MICCAI 201

    An evaluation of the Goddard Space Flight Center Library

    Get PDF
    The character and degree of coincidence between the current and future missions, programs, and projects of the Goddard Space Flight Center and the current and future collection, services, and facilities of its library were determined from structured interviews and discussions with various classes of facility personnel. In addition to the tabulation and interpretation of the data from the structured interview survey, five types of statistical analyses were performed to corroborate (or contradict) the survey results and to produce useful information not readily attainable through survey material. Conclusions reached regarding compatability between needs and holdings, services and buildings, library hours of operation, methods of early detection and anticipation of changing holdings requirements, and the impact of near future programs are presented along with a list of statistics needing collection, organization, and interpretation on a continuing or longitudinal basis

    Uncoupling of Brain Activity from Movement Defines Arousal States in Drosophila

    Get PDF
    AbstractBackground: An animal's state of arousal is fundamental to all of its behavior. Arousal is generally ascertained by measures of movement complemented by brain activity recordings, which can provide signatures independently of movement activity. Here we examine the relationships among movement, arousal state, and local field potential (LFP) activity in the Drosophila brain.Results: We have measured the correlation between local field potentials (LFPs) in the brain and overt movements of the fruit fly during different states of arousal, such as spontaneous daytime waking movement, visual arousal, spontaneous night-time movement, and stimulus-induced movement. We found that the correlation strength between brain LFP activity and movement was dependent on behavioral state and, to some extent, on LFP frequency range. Brain activity and movement were uncoupled during the presentation of visual stimuli and also in the course of overnight experiments in the dark. Epochs of low correlation or uncoupling were predictive of increased arousal thresholds even in moving flies and thus define a distinct state of arousal intermediate between sleep and waking in the fruit fly.Conclusions: These experiments indicate that the relationship between brain LFPs and movement in the fruit fly is dynamic and that the degree of coupling between these two measures of activity defines distinct states of arousal

    Dismantling of a ship while floating next to a pier

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1984.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.Bibliography: leaf 67.by Edward B. Greenspan.M.S

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    Waves attractors in rotating fluids: a paradigm for ill-posed Cauchy problems

    Get PDF
    In the limit of low viscosity, we show that the amplitude of the modes of oscillation of a rotating fluid, namely inertial modes, concentrate along an attractor formed by a periodic orbit of characteristics of the underlying hyperbolic Poincar\'e equation. The dynamics of characteristics is used to elaborate a scenario for the asymptotic behaviour of the eigenmodes and eigenspectrum in the physically relevant r\'egime of very low viscosities which are out of reach numerically. This problem offers a canonical ill-posed Cauchy problem which has applications in other fields.Comment: 4 pages, 5 fi

    Anisotropy and non-universality in scaling laws of the large scale energy spectrum in rotating turbulence

    Get PDF
    Rapidly rotating turbulent flow is characterized by the emergence of columnar structures that are representative of quasi-two dimensional behavior of the flow. It is known that when energy is injected into the fluid at an intermediate scale LfL_f, it cascades towards smaller as well as larger scales. In this paper we analyze the flow in the \textit{inverse cascade} range at a small but fixed Rossby number, {Rof≈0.05\mathcal{R}o_f \approx 0.05}. Several {numerical simulations with} helical and non-helical forcing functions are considered in periodic boxes with unit aspect ratio. In order to resolve the inverse cascade range with {reasonably} large Reynolds number, the analysis is based on large eddy simulations which include the effect of helicity on eddy viscosity and eddy noise. Thus, we model the small scales and resolve explicitly the large scales. We show that the large-scale energy spectrum has at least two solutions: one that is consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology for the inverse cascade of energy in two-dimensional (2D) turbulence with a {∼k⊥−5/3\sim k_{\perp}^{-5/3}} scaling, and the other that corresponds to a steeper {∼k⊥−3\sim k_{\perp}^{-3}} spectrum in which the three-dimensional (3D) modes release a substantial fraction of their energy per unit time to 2D modes. {The spectrum that} emerges {depends on} the anisotropy of the forcing function{,} the former solution prevailing for forcings in which more energy is injected into 2D modes while the latter prevails for isotropic forcing. {In the case of anisotropic forcing, whence the energy} goes from the 2D to the 3D modes at low wavenumbers, large-scale shear is created resulting in another time scale τsh\tau_{sh}, associated with shear, {thereby producing} a ∼k−1\sim k^{-1} spectrum for the {total energy} with the 2D modes still following a {∼k⊥−5/3\sim k_{\perp}^{-5/3}} scaling
    • …
    corecore