10 research outputs found

    Acoustical patchiness of mesopelagic micronekton

    Get PDF
    Patterns of acoustical scattering in both depth and horizontal extent were analyzed to estimate the spatial and temporal scales of variability in biomass of mesopelagic sound scatterers, principally micronekton. The patterns observed included extensive layers of low and nearly uniform scattering strength and distinct three-dimensional patches of stronger scattering. These patches dispersed vertically at night after diel migration of a portion of the scatterers, but reassembled quite accurately the following day. Analysis of variance spectra for average acoustical scattering profiles within a patch suggest that micro-patches, with dimensions on the order of 15 m vertically by 1 km horizontally, are present both day and night. Horizontal variance spectra suggest the possibility of different horizontal aggregation mechanisms at scales above and below approximately 8.9 km

    Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord

    Get PDF
    Huge accumulations of diatom-dominated marine snow (aggregates \u3e0.5 mm in diameter) were observed in a layer approximately 50 cm thick persisting over a 24 h period in a shallow fjord in the San Juan Islands, Washington, USA. The layer was associated with the 22.4 σt density surface. A second thin layer of elevated phytoplankton concentration located at a density discontinuity 1.5 to 2 m above the marine snow layer occurred within a dense diatom bloom near the surface. At the end of the study period, isopycnals shoaled and the 2 layers merged. More than 80% of the diatom bloom consisted of Thalassiosira spp. (50 to 59%), Odontella longicruris (5 to 14%), Asterionellopsis glacialis, and Thalassionema nitzschioides. A much higher proportion of O. longicruris occurred in marine snow (about 53%) than among suspended cells suggesting that this species differentially aggregated. Most zooplankton avoided the mucus-rich aggregate layer. The layer of marine snow was formed when sinking aggregated diatoms reached neutral buoyancy at the 22.4 isopycnal, probably due to the presence of low salinity mucus resistant to salt exchange in the interstices of the aggregates. Rates of turbulent kinetic energy dissipation throughout the water column rarely exceeded 10-8 m2 s-3 and aggregates below the thin layer were largely detrital in composition indicating that small-scale shears due to turbulence did not erode the layer of marine snow. The accumulation of marine snow and phytoplankton in persistent, discrete layers at density discontinuities results in habitat partitioning of the pelagic zone, impacts the distribution and interactions of planktonic organisms as well as the intensity and location of biological processes in the water column, and helps maintain species diversity

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Advances in defining fine- and micro-scale pattern in marine plankton

    No full text
    Since the June 1995 ICES Symposium on Fisheries and Plankton Acoustics in Aberdeen (MacLennan and Holliday, 1996) the use of acoustics for studying zooplankton has seen important advances. Acoustical monitoring of small-scale zooplankton distributions can now be done at intervals of a fraction of a minute. Resolution at vertical spatial scales of tens of centimeters is now easily achieved with commercially available sensors. Multiple-frequency echo-ranging sensors (TAPSâ„¢) have been deployed in an up-looking mode on the bottom, and on moorings looking up, down and horizontally. Real-time telemetry provides data on plankton distributions at ranges up to tens of meters from the sensors for periods of weeks to months. These sensors allow one to estimate total zooplankton biomass and the size-abundance spectrum of the animals in the water column at different depths and times. When a profiling CTD and multi-spectral optical sensors were used to define the physical environment and phytoplankton distributions near an acoustical zooplankton profiler, bold relationships were observed between measured spatial and temporal patterns. New methods in zooplankton acoustics are illustrated with data collected from these sensors while monitoring thin, sub-meter thick layers of plankton and diel migrations of benthopelagic crustaceans

    Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis

    No full text
    Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral density (BMD). We undertook a genomewide association study (GWAS) in 142,487 individuals from the UK Biobank to identify loci associated with BMD as estimated by quantitative ultrasound of the heel. We identified 307 conditionally independent single-nucleotide polymorphisms (SNPs) that attained genome-wide significance at 203 loci, explaining approximately 12% of the phenotypic variance. These included 153 previously unreported loci, and several rare variants with large effect sizes. To investigate the underlying mechanisms, we undertook (1) bioinformatic, functional genomic annotation and human osteoblast expression studies; (2) gene-function prediction; (3) skeletal phenotyping of 120 knockout mice with deletions of genes adjacent to lead independent SNPs; and (4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. The results implicate GPC6 as a novel determinant of BMD, and also identify abnormal skeletal phenotypes in knockout mice associated with a further 100 prioritized genes
    corecore