538 research outputs found

    Breakthrough capability for the NASA Astrophysics Explorer Program: Reaching the darkest sky

    Full text link
    We describe a mission architecture designed to substantially increase the science capability of the NASA Science Mission Directorate (SMD) Astrophysics Explorer Program for all AO proposers working within the near-UV to far-infrared spectrum. We have demonstrated that augmentation of Falcon 9 Explorer launch services with a 13 kW Solar Electric Propulsion (SEP) stage can deliver a 700 kg science observatory payload to extra-Zodiacal orbit. This new capability enables up to ~13X increased photometric sensitivity and ~160X increased observing speed relative to a Sun-Earth L2, Earth-trailing, or Earth orbit with no increase in telescope aperture. All enabling SEP stage technologies for this launch service augmentation have reached sufficient readiness (TRL-6) for Explorer Program application in conjunction with the Falcon 9. We demonstrate that enabling Astrophysics Explorers to reach extra-zodiacal orbit will allow this small payload program to rival the science performance of much larger long development time systems; thus, providing a means to realize major science objectives while increasing the SMD Astrophysics portfolio diversity and resiliency to external budget pressure. The SEP technology employed in this study has strong applicability to SMD Planetary Science community-proposed missions. SEP is a stated flight demonstration priority for NASA's Office of the Chief Technologist (OCT). This new mission architecture for astrophysics Explorers enables an attractive realization of joint goals for OCT and SMD with wide applicability across SMD science disciplines.Comment: Submitted to proceedings of the SPIE Astronomical Telescopes and Instrumentation conference, Amsterdam, The Netherlands, July 201

    Malaria risk factor assessment using active and passive surveillance data from Aceh Besar, Indonesia, a low endemic, malaria elimination setting with Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum

    Get PDF
    Background: As malaria transmission declines, it becomes more geographically focused and more likely due to asymptomatic and non-falciparum infections. To inform malaria elimination planning in the context of this changing epidemiology, local assessments on the risk factors for malaria infection are necessary, yet challenging due to the low number of malaria cases. Methods: A population-based, cross-sectional study was performed using passive and active surveillance data collected in Aceh Besar District, Indonesia from 2014 to 2015. Malaria infection was defined as symptomatic polymerase chain reaction (PCR)-confirmed infection in index cases reported from health facilities, and asymptomatic or symptomatic PCR-confirmed infection identified in reactive case detection (RACD). Potential risk factors for any infection, species-specific infection, or secondary-case detection in RACD were assessed through questionnaires and evaluated for associations. Results: Nineteen Plasmodium knowlesi, 12 Plasmodium vivax and six Plasmodium falciparum cases were identified passively, and 1495 community members screened in RACD, of which six secondary cases were detected (one P. knowlesi, three P. vivax, and two P. falciparum, with four being asymptomatic). Compared to non-infected subjects screened in RACD, cases identified through passive or active surveillance were more likely to be male (AOR 12.5, 95 % CI 3.0–52.1), adult (AOR 14.0, 95 % CI 2.2–89.6 for age 16–45 years compared to <15 years), have visited the forest in the previous month for any reason (AOR 5.6, 95 % CI 1.3–24.2), and have a workplace near or in the forest and requiring overnight stays (AOR 7.9, 95 % CI 1.6–39.7 compared to workplace not near or in the forest). Comparing subjects with infections of different species, differences were observed in sub-district of residence and other demographic and behavioural factors. Among subjects screened in RACD, cases compared to non-cases were more likely to be febrile and reside within 100 m of the index case. Conclusion: In this setting, risk of malaria infection in index and RACD identified cases was associated with forest exposure, particularly overnights in the forest for work. In low-transmission settings, utilization of data available through routine passive and active surveillance can support efforts to target individuals at high ris

    The Early Spectrophotometric Evolution of V1186 Scorpii (Nova Scorpii 2004 #1)

    Full text link
    We report optical photometry and optical through mid-infrared spectroscopy of the classical nova V1186 Sco. This slowly developing nova had an complex light curve with multiple secondary peaks similar to those seen in PW Vul. The time to decline 2 magnitudes, t2_2, was 20 days but the erratic nature of the light curve makes determination of intrinsic properties based on the decline time (e.g., luminosity) problematic, and the often cited MMRD relationship of Della Valle and Livio (1995) fails to yield a plausible distance. Spectra covering 0.35 to 35 μ\mum were obtained in two separate epochs during the first year of outburst. The first set of spectra, taken about 2 months after visible maximum, are typical of a CO-type nova with narrow line emission from \ion{H}{1}, \ion{Fe}{2}, \ion{O}{1} and \ion{He}{1}. Later data, obtained between 260 and 380 days after maximum, reveal an emerging nebular spectrum. \textit{Spitzer} spectra show weakening hydrogen recombination emission with the emergence of [\ion{Ne}{2}] (12.81 μ\mum) as the strongest line. Strong emission from [\ion{Ne}{3}] (15.56 μ\mum) is also detected. Photoionization models with low effective temperature sources and only marginal neon enhancement (Ne \sim 1.3 Ne_{\odot}) are consistent with these IR fine-structure neon lines indicating that V1186 Sco did not occur on a ONeMg white dwarf. In contrast, the slow and erratic light curve evolution, spectral development, and photoionization analysis of the ejecta imply the outburst occurred on a low mass CO white dwarf. We note that this is the first time strong [\ion{Ne}{2}] lines have been detected so early in the outburst of a CO nova and suggests that the presence of mid-infrared neon lines is not directly indicative of a ONeMg nova event.Comment: 7 figures, 37 pages. Astronimocal Journal accepte

    Applying next-generation sequencing to track falciparum malaria in sub-Saharan Africa

    Get PDF
    Next-generation sequencing (NGS) technologies are increasingly being used to address a diverse range of biological and epidemiological questions. The current understanding of malaria transmission dynamics and parasite movement mainly relies on the analyses of epidemiologic data, e.g. case counts and self-reported travel history data. However, travel history data are often not routinely collected or are incomplete, lacking the necessary level of accuracy. Although genetic data from routinely collected field samples provides an unprecedented opportunity to track the spread of malaria parasites, it remains an underutilized resource for surveillance due to lack of local awareness and capacity, limited access to sensitive laboratory methods and associated computational tools and difficulty in interpreting genetic epidemiology data. In this review, the potential roles of NGS in better understanding of transmission patterns, accurately tracking parasite movement and addressing the emerging challenges of imported malaria in low transmission settings of sub-Saharan Africa are discussed. Furthermore, this review highlights the insights gained from malaria genomic research and challenges associated with integrating malaria genomics into existing surveillance tools to inform control and elimination strategies

    Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.

    Get PDF
    At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings

    Milliarcsecond N-Band Observations of the Nova RS Ophiuchi: First Science with the Keck Interferometer Nuller

    Get PDF
    We report observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nuller (KIN), approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. These observations represent the first scientific results from the KIN, which operates in N-band from 8 to 12.5 microns in a nulling mode. By fitting the unique KIN data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0, or 5.4 mas for a disk profile, gaussian profile (FWHM), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission and atomic metals including silicon located in the inner spatial regime near the white dwarf (WD) relative to the outer regime. There are also nebular emission lines and evidence of hot silicate dust in the outer spatial region, centered at ! 17 AU from the WD, that are not found in the inner regime. Our evidence suggests that these features have been excited by the nova flash in the outer spatial regime before the blast wave reached these regions. These identifications support a model in which the dust appears to be present between outbursts and is not created during the outburst event. We further discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.Comment: 41 pages, 10 figure

    ISO Far-IR Spectroscopy of IR-Bright Galaxies and ULIRGs

    Get PDF
    Based on far-infrared spectroscopy of a small sample of nearby infrared-bright and ultraluminous infrared galaxies (ULIRGs) with the ISO Long Wavelength Spectrometer, we find a dramatic progression in ionic/atomic fine-structure emission line and molecular/atomic absorption line characteristics in these galaxies extending from strong [O III]52,88 and [N III]57 micron line emission to detection of only faint [C II]158 micron line emission from gas in photodissociation regions in the ULIRGs. The molecular absorption spectra show varying excitation as well, extending from galaxies in which the molecular population mainly occupies the ground state to galaxies in which there is significant population in higher levels. In the case of the prototypical ULIRG, the merger galaxy Arp 220, the spectrum is dominated by absorption lines of OH, H2O, CH, and [O I]. Low [O III]88 micron line flux relative to the integrated far-infrared flux correlates with low excitation and does not appear to be due to far-infrared extinction or to density effects. A progression toward soft radiation fields or very dusty HII regions may explain these effects

    The coronal line regions of planetary nebulae NGC6302 and NGC6537: 3-13um grating and echelle spectroscopy

    Get PDF
    We report on advances in the study of the cores of NGC6302 and NGC6537 using infrared grating and echelle spectroscopy. In NGC6302, emission lines from species spanning a large range of ionization potential, and in particular [SiIX]3.934um, are interpreted using photoionization models (including CLOUDY), which allow us to reestimate the central star's temperature to be about 250000K. All of the detected lines are consistent with this value, except for [AlV] and [AlVI]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154eV). A similar depletion pattern is observed in NGC6537. Echelle spectroscopy of IR coronal ions in NGC6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (< 22km/s FWHM), with no evidence of the broad wings found in optical lines from species with similar ionization potentials, such as [NeV]3426A. We note the absence of a hot bubble, or a wind blown bipolar cavity filled with a hot plasma, at least on 1'' and 10km/s scales. We also provide accurate new wavelengths for several of the infrared coronal lines observed with the echelle.Comment: Accepted for publication in MNRA
    corecore