122 research outputs found

    Antibiotic resistant Shigella is a major cause of diarrhoea in the Highlands of Papua New Guinea

    Get PDF
    Introduction: Diarrhoea remains a major cause of illness in Papua New Guinea (PNG); however, little is known about its aetiology. As a result of the cholera outbreak that spread throughout PNG in 2009-2011, we conducted diarrhoeal surveillance in Eastern Highlands Province. Methodology: Following informed consent and a brief questionnaire, participants provided a stool sample or duplicate rectal swabs. Samples were tested for common bacterial pathogens Salmonella spp., Shigella spp., Vibrio spp., Campylobacter spp. and Yersinia enterocolitica using established culture methods. Enteric parasites were detected using microscopy. Results: A total of 216 participants were enrolled; where age was recorded, 42% were under 5 years of age, 6.7% were 5 to 17 years of age and 51.3% ≥18 years of age. One or more pathogens were detected in 68 (31.5%) participants, with Shigella (primarily S. flexneri) being the most commonly isolated (47 of 216 participants). Enteric parasites were detected in 23 of the 216 participants, occurring as a co-infection with another pathogen in 12 of 23 cases. No Vibrio cholerae was detected. Shigella isolates were commonly resistant to ampicillin, tetracycline, co-trimoxazole and chloramphenicol. Conclusions: Shigellae, specifically S. flexneri, are important pathogens in the highlands of PNG. While most studies in low-income settings focus on childhood aetiology, we have demonstrated the importance of Shigella in both children and adults. Enteric parasites remain present and presumably contribute to the burden of gastrointestinal illness. While improvements in sanitation and hygiene would help lower the burden of all aetiologies of infectious diarrhoea, additional control strategies targeting Shigella may also be warranted

    Inventory of molecular markers affecting biological characteristics of avian influenza A viruses

    Get PDF
    Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9

    Health challenges of the Pacific Region: insights from history, geography, social determinants, genetics, and the microbiome

    Get PDF
    The Pacific region, also referred to as Oceania, is a geographically widespread region populated by people of diverse cultures and ethnicities. Indigenous people in the region (Melanesians, Polynesians, Micronesians, Papuans, and Indigenous Australians) are over-represented on national, regional, and global scales for the burden of infectious and non-communicable diseases. Although social and environmental factors such as poverty, education, and access to health-care are assumed to be major drivers of this disease burden, there is also developing evidence that genetic and microbiotic factors should also be considered. To date, studies investigating genetic and/or microbiotic links with vulnerabilities to infectious and non-communicable diseases have mostly focused on populations in Europe, Asia, and USA, with uncertain associations for other populations such as indigenous communities in Oceania. Recent developments in personalized medicine have shown that identifying ethnicity-linked genetic vulnerabilities can be important for medical management. Although our understanding of the impacts of the gut microbiome on health is still in the early stages, it is likely that equivalent vulnerabilities will also be identified through the interaction between gut microbiome composition and function with pathogens and the host immune system. As rapid economic, dietary, and cultural changes occur throughout Oceania it becomes increasingly important that further research is conducted within indigenous populations to address the double burden of high rates of infectious diseases and rapidly rising non-communicable diseases so that comprehensive development goals can be planned. In this article, we review the current knowledge on the impact of nutrition, genetics, and the gut microbiome on infectious diseases in indigenous people of the Pacific region

    Addressing food insecurity in Papua New Guinea through food safety and sago cropping

    Get PDF
    Papua New Guinea (PNG) is known to have a large resource base of sago with over 1 million ha, as well as a high number of germplasm types of the Metroxylon species. The country’s food security status is very low and is primarily dependent on subsistence fresh garden produce as practiced by 85% of the population who are rural dwellers. Postharvest losses can be as high as 40% with little to no postharvest technology nor processing of foods done. Sago provides well for food security and sustains life in rural communities during disasters such as droughts, floods, and cyclones. The dilemma of sago being an underutilized crop in PNG is exacerbated by the introduction of new food crops, cash crops, and limited accessibility to cash to purchase other foods. Over the last 50 years, sago consumption has diminished as one of the major traditional food staples, from 16% to less than 10%. Neglect of sago is further due to food safety concerns about traditionally processed sago, in particular, the risk from sago hemolytic disease (SHD). For over30 years, SHD has been a food safety issue since it was first reported in 1973.Investigations on SHD highlight the serious need to improve on the hygiene and sanitation of the traditional postharvest processing and storage methods of sago starch in PNG. A set of hazard analysis and critical control point (HACCP) protocols has been developed for traditional processing of sago as a food safety measure to improve food safety for food security. While commercial cultivation is nonexistent, there is increased planting of the larger hapaxanthic, non-soboliferous sagospecies, Metroxylon salomonense Becc., in some nontraditional sago-consuming areas as a low-cost raw material source for roof thatching and other building materials. It is however a wasted opportunity for food security in these areas as the starch from the palm is not utilized. Current work in these areas promotes sago as a potential food source that can be harvested or processed into flour. This is to improve the food security status in areas of high population density, like island communities where land is scarce

    A Binary Millisecond Pulsar in Globular Cluster NGC6544

    Get PDF
    We report the detection of a new 3.06 ms binary pulsar in the globular cluster NGC6544 using a Fourier-domain ``acceleration'' search. With an implied companion mass of ~0.01 solar masses and an orbital period of only P_b~1.7 hours, it displays very similar orbital properties to many pulsars which are eclipsed by their companion winds. The orbital period is the second shortest of known binary pulsars after 47 Tuc R. The measured flux density of 1.3 +/- 0.4 mJy at 1332 MHz indicates that the pulsar is almost certainly the known steep-spectrum point source near the core of NGC6544.Comment: Accepted by ApJ Letters on 11 October 2000, 5 page

    The influences of low protein diet on the intestinal microbiota of mice

    Get PDF
    Recent research suggests that protein deficiency symptoms are influenced by the intestinal microbiota. We investigated the influence of low protein diet on composition of the intestinal microbiota through animal experiments. Specific pathogen-free (SPF) mice were fed one of four diets (3, 6, 9, or 12% protein) for 4 weeks (n = 5 per diet). Mice fed the 3% protein diet showed protein deficiency symptoms such as weight loss and low level of blood urea nitrogen concentration in their serum. The intestinal microbiota of mice in the 3% and 12% protein diet groups at day 0, 7, 14, 21 and 28 were investigated by 16S rRNA gene sequencing, which revealed differences in the microbiota. In the 3% protein diet group, a greater abundance of urease producing bacterial species was detected across the duration of the study. In the 12% diet protein group, increases of abundance of Streptococcaceae and Clostridiales families was detected. These results suggest that protein deficiency may be associated with shifts in intestinal microbiota

    Detection of enteric viral and bacterial pathogens associated with paediatric diarrhoea in Goroka, Papua New Guinea

    Get PDF
    Objectives: The aim of this study was to investigate the viral and bacterial causes of acute watery diarrhoea in hospitalized children in Papua New Guinea. Methods: A retrospective analysis was conducted on stool samples collected from 199 children (age < 5 years) admitted to the paediatric ward of Goroka General Hospital from August 2009 through November 2010. A large range of viral and bacterial enteric pathogens were targeted using real-time PCR/RT-PCR assays. Results: Young children were much more likely to be admitted with acute gastroenteritis, with 62.8% of patients aged <1 year and 88.4% aged <2 years. An enteric pathogen was detected in 69.8% (n = 138) of patients. The most commonly detected pathogens were Shigella spp (26.6%), rotavirus (25.6%), adenovirus types 40/41 (11.6%), enterotoxigenic Escherichia coli (11.1%), enteropathogenic E. coli (8.5%), norovirus G2 (6.0%), and Campylobacter spp (4.0%). Norovirus G1, sapovirus, and Salmonella spp were also detected, but below our statistical limit of detection. Vibrio cholerae and astrovirus were not detected in any patients. Mixed infections were detected in 22.1% of patients, with Shigella and rotavirus most commonly detected in co-infections with other pathogens. Conclusions: This study demonstrates that Shigella and rotavirus are the major pathogens associated with acute paediatric gastroenteritis in this setting

    Wave 2 strains of atypical Vibrio cholerae El Tor caused the 2009-2011 cholera outbreak in Papua New Guinea

    Get PDF
    Vibrio cholerae is the causative agent of cholera, a globally important human disease for at least 200 years. In 2009-2011, the first recorded cholera outbreak in Papua New Guinea (PNG) occurred. We conducted genetic and phenotypic characterization of 21 isolates of V. cholerae, with whole-genome sequencing conducted on 2 representative isolates. The PNG outbreak was caused by an atypical El Tor strain harbouring a tandem repeat of the CTX prophage on chromosome II. Whole-genome sequence data, prophage structural analysis and the absence of the SXT integrative conjugative element was indicative that the PNG isolates were most closely related to strains previously isolated in South-East and East Asia with affiliations to global wave 2 strains. This finding suggests that the cholera outbreak in PNG was caused by an exotic (non-endemic) strain of V. cholerae that originated in South-East Asia

    Wave 2 strains of atypical Vibrio cholerae El Tor caused the 2009-2011 cholera outbreak in Papua New Guinea.

    Get PDF
    Vibrio cholerae is the causative agent of cholera, a globally important human disease for at least 200 years. In 2009-2011, the first recorded cholera outbreak in Papua New Guinea (PNG) occurred. We conducted genetic and phenotypic characterization of 21 isolates of V. cholerae, with whole-genome sequencing conducted on 2 representative isolates. The PNG outbreak was caused by an atypical El Tor strain harbouring a tandem repeat of the CTX prophage on chromosome II. Whole-genome sequence data, prophage structural analysis and the absence of the SXT integrative conjugative element was indicative that the PNG isolates were most closely related to strains previously isolated in South-East and East Asia with affiliations to global wave 2 strains. This finding suggests that the cholera outbreak in PNG was caused by an exotic (non-endemic) strain of V. cholerae that originated in South-East Asia

    The evolution and genetic diversity of avian influenza A(H9N2) viruses in Cambodia, 2015 – 2016

    Get PDF
    Low pathogenic A(H9N2) subtype avian influenza viruses (AIVs) were originally detected in Cambodian poultry in 2013, and now circulate endemically. We sequenced and characterised 64 A(H9N2) AIVs detected in Cambodian poultry (chickens and ducks) from January 2015 to May 2016. All A(H9) viruses collected in 2015 and 2016 belonged to a new BJ/94like h9-4.2.5 sub-lineage that emerged in the region during or after 2013, and was distinct to previously detected Cambodian viruses. Overall, there was a reduction of genetic diversity of H9N2 since 2013, however two genotypes were detected in circulation, P and V, with extensive reassortment between the viruses. Phylogenetic analysis showed a close relationship between A(H9N2) AIVs detected in Cambodian and Vietnamese poultry, highlighting cross-border trade/movement of live, domestic poultry between the countries. Wild birds may also play a role in A(H9N2) transmission in the region. Some genes of the Cambodian isolates frequently clustered with zoonotic A(H7N9), A(H9N2) and A(H10N8) viruses, suggesting a common ecology. Molecular analysis showed 100% of viruses contained the hemagglutinin (HA) Q226L substitution, which favours mammalian receptor type binding. All viruses were susceptible to the neuraminidase inhibitor antivirals; however, 41% contained the matrix (M2) S31N substitution associated with resistance to adamantanes. Overall, Cambodian A(H9N2) viruses possessed factors known to increase zoonotic potential, and therefore their evolution should be continually monitored
    • …
    corecore