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Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in 
humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high 
risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase 
pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, 
transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the 
current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative 
capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes 
outside of A/H5N1 and A/H7N9.
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Introduction

Avian influenza viruses (AIVs) (Family: Orthomyxoviridae, 
genus: Influenzavirus A) are negative sense, single-stranded 
RNA viruses found globally in their natural reservoir hosts, 
wild waterfowl, and other aquatic birds (mainly of the 
orders Anseriformes and Charadriiformes). AIV genomes 
are composed of eight genomic RNA segments encoding 
at least twelve viral proteins. Viral nomenclature is based 
on combinations of the two surface glycoproteins, hemag-
glutinin (HA) and neuraminidase (NA). To date, sixteen HA 

(H1–H16) and nine NA (N1–N9) subtypes circulate in wild 
aquatic birds [1], and two novel HA subtypes (H17 and H18) 
and two novel NA subtypes (N10 and N11) have recently 
been identified in bats [2–6]. AIVs are sporadically transmit-
ted from waterfowl to domestic avian species, resulting in a 
number of stable AIV lineages in domestic poultry. These 
domestic lineages typically circulate in poultry flocks as 
low pathogenic (LPAIV) variants, causing little to no appar-
ent illness; however, some subtypes (namely A/H5 and A/
H7) have the potential to mutate to form highly pathogenic 
(HPAIV) variants capable of causing high mortality rates in 
domestic avian species. These HPAIV lineages then spread 
back to wild bird species, potentiating global spread [1].

Occasionally, AIVs spillover into mammalian spe-
cies such as humans, swine, marine mammals, and vari-
ous members of the Equidae, Felidae, and Canidae fami-
lies [7–10], generally through close contact with domestic 
poultry, the primary intermediate host [11]. These spillovers 
sometimes result in stable, mammalian-adapted lineages as 
have occurred with subtype A/H3N8 AIVs in equines and 
canines [9]. A number of zoonotic infections with differ-
ent AIV subtypes have occurred in humans, including: A/
H5 (H5N1,H5N6), A/H6N1, A/H7 (H7N2, H7N3, H7N4, 
H7N7, H7N9), A/H9N2, and A/H10 (H10N7, H10N8) [12]. 
Clinical symptoms vary in severity from asymptomatic 
infections, to conjunctivitis or influenza-like-illness, to 
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severe acute respiratory illness. Infections with particularly 
virulent viral subtypes, such as A/H5 and A/H7, or infec-
tions in immunocompromised, high-risk hosts can cause 
high morbidity, respiratory distress and/or multiple-organ 
failure, and, in some cases, mortality [13]. Fortunately, mini-
mal human-to-human transmission occurs in human AIV 
cases; however, each zoonotic event in mammals represents 
a risk for AIVs to adapt replicative and transmissible prop-
erties in the mammalian host. Indeed, several studies using 
ferret models have shown that these AIVs have the potential 
to mutate into airborne transmissible forms, potentially with 
some mutations already present in nature [14, 15]. However, 
while these observations are very important, point mutations 
associated with airborne transmission between ferrets are 
not universal, as they may not confer similar changes in bio-
logical characteristics of these viruses in other mammalian 
species, including humans.

Given the continual circulation of AIVs in wild birds and 
domestic poultry, the potential for human spillover, and the 
mutable nature of AIV itself, it is paramount to understand 
the potential risk of any emerging AIV. Indeed, risk assess-
ment tools are vital in pandemic preparedness planning [16]. 
Genetic variation resulting in changes in viral properties 
such as receptor binding, replicative capacity, and transmis-
sion is a critical component of risk assessment. Historically, 
assessing these factors occurs in vivo; however, the ability to 
evaluate these properties in silico from sequence data allows 
for faster, more efficacious assessment of novel, emerging 
strains. Numerous studies identify molecular markers for 
AIV risk, and several previous papers compile markers of 
interest. Here, we summarize and update the current knowl-
edge on experimentally verified molecular markers affecting 
biological characteristics of avian influenza viruses impor-
tant for risk assessment and broaden the scope outside of the 
A/H5N1 and A/H7N9 subtypes.

Methodology

Data collection

All available information on AIV molecular markers/muta-
tions was collected from: the CDC H5N1 Genetic changes 
inventory [17], the WHO Working Group on Surveillance 
of Influenza Antiviral Susceptibility (WHO-AVWG) [18], 
and publications summarizing AIV mutations and molecu-
lar markers affecting biological characteristics and potential 
risk [19–21]. Journal articles were sourced for each spe-
cific subtype using PubMed searches with MeSH Terms, 
Boolean operators and wild cards. For example, terms 
used to search for mutations in H6 AIVs: (influenza A 
virus[MeSH Terms]) AND (mutation OR mutagenesis OR 

virulence[MeSH Terms]) AND (H6[Title/Abstract] OR 
H6N*[Title/Abstract]).

Inclusion/exclusion

All mutations/molecular markers from influenza viruses of 
avian origin were included in the initial screening and tabu-
lation, including viruses isolated from humans AIV cases. 
However, we do not consider this inventory as an exhaustive 
list. Several studies computationally predict molecular mark-
ers of viral adaptation to humans [22–26]. While this work is 
extremely valuable, experimental validation of the majority 
of the markers described in these studies is not available and, 
therefore, necessitated exclusion from this data summary. In 
addition, since this inventory focuses on AIV and zoonotic 
infection, genome mutations in human seasonal influenza 
viruses were also excluded. As several publications observe 
the same mutations causing similar biological characteris-
tics that could indicate risk markers, we excluded duplicate 
information from the tables.

Numbering

For all data presented, HA mutations are numbered accord-
ing to the H3 subtype to maintain consistency with avail-
able literature; however, H5 numbering was also included 
in the table. N2 numbering was used for NA as this is most 
commonly used in the current literature. Internal proteins 
(including deletions) and deletions in NA are numbered 
according to the full length of A/Goose/Guangdong/1/1996 
genome segments.

Surface proteins

Hemagglutinin (HA; Table 1)

Hemagglutinin is a homotrimeric transmembrane protein 
and is the most abundant protein present on the surface of 
influenza virions. For virions to successfully enter and rep-
licate in host cells, host proteases cleave the HA0 precursor 
into two subunits, HA1 and HA2. The main role of the HA1 
subunit is to initiate infection by recognizing and binding 
receptors on the host cell surface. After internalization and 
entrance into the endosomal pathway, the HA2 subunit fuses 
the viral and endosomal membranes, creating a pore for viral 
RNA entry into the host cell, and initiation of transcription 
and translation of viral products [27, 28]. Several muta-
tions in HA are associated with changes in viral fitness and 
transmissibility, as they affect viral receptor binding avidity/
specificity or viral membrane fusion activities (Table 1).
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Table 1  Molecular markers/motifs in the hemagglutinin (HA; segment 4) gene of influenza virus experimentally verified molecular markers 
involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals

Mutation/motif Phenotype Subtypes tested References

H3  numberinga H5  numberingb

D101N D94N Increased virus binding to 
α2–6

H5N1 [200]

S126N S121N Increased virus binding to 
α2–6

H5N1 [201]

S137A S133A Increased pseudovirus bind-
ing to α2–6

H5N1 [44]

A138V A134V Increased infectivity in SIAT 
Cells

H5N1 [202, 203]

G143R G139R Increased virus binding to 
α2–6

H5N1 [204]

S158N S154N Increased virus binding to 
α2–6

H5N1 [201]

N158D N154D Decreased virulence in mice H9N2 [205]
S159N S155N Increased virus binding to 

α2–6
H5N1 [201]

T160A T156A Increased virus binding to 
α2–6, increased transmis-
sion in guinea pigs

H5N1 [201, 206]

G186V G182V Increased virus binding to 
α2–3

H7N9 [207]

N186K/D N182K/D Increased virus binding to 
α2–6

H5N1 [201, 203, 204, 206]

V186N V182N Increased binding to α2–6, 
decreased binding to α2–3

H13N6 [208]

P186L P182L Decreased binding to α2–3 H6N1 [209]
D187G D183G Increased virus binding to 

α2–6
H5N1 [47]

E190G E186G Increased virus binding to 
α2–6, maintained α2–3 
binding, decreased viru-
lence in mice

H5N1 [47, 210]

E190V E186V Decreased binding to α2–3 
and α2–6

H6N2 [211]

T190V T186V Enhances binding affinity to 
mammalian cells and repli-
cation in mammalian cells

H9N2 [212]

T192I T188I Increased pseudovirus bind-
ing to α2–6

H5N1 [44]

K193R/T K189R/T Increased virus binding to 
α2–6

H5N1 [201, 213]

Q196R/H Q192R/H Increased virus binding to 
α2–6

H5N1 [47, 204, 214]

N197K N193K Increased virus binding to 
α2–6

H5N1 [204]

V214I V210I Increased virus binding to 
α2–6

H5N1 [214]

G225D G221D Increased virus binding to 
α2,6

H6N1 [43]
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Table 1  (continued)

Mutation/motif Phenotype Subtypes tested References

H3  numberinga H5  numberingb

Q226L Q222L Increased virus binding to 
α2–6

H4N6 [50]

Increased virus binding to 
α2–6

H6N2 [211]

Increased virus binding to 
α2–6, decreased binding 
to α2–3

H5N1 [46]

Increased virus binding to 
α2–3, decreased binding 
to α2–6

H7N9 [52, 215]

Increased virus binding to 
α2–6, enhanced replication 
in mammalian cells and 
ferrets, enhanced contact 
transmission in ferrets

H9N2 [49, 54]

Loss of binding to α2–3 H10N8 (human isolate) [53, 216, 217]
L226I L222I Decreased binding to α2–3 H7N9 [52]
S227N S223N Increased virus binding to 

α2–6
H5N1 [46, 47, 203, 218, 219]

G228A/S G224A/S Increased binding to α2–6, 
dual receptor specificity

H4N6 [50]

G228S G224S Increased viral replication 
in mammalian cells and 
virulence in mice

H1N2 [220]

Increased virus binding to 
α2–6

H5N1 [45, 46, 201, 209]

Decreased virus binding to 
α2–3

H6N2 [211]

Decreased binding to α2–3 
and α2–6 receptors

H7N9 [51]

Decreased binding to α2–3, 
no binding to α2–6

H10N8 (human isolate) [53, 217]

P239S P235S Increased virus binding to 
α2–6

H5N1 [214]

E255K E251K Increased virus binding to 
α2–6

H5N1 [47]

326 to 329 323 to 330 (R-X-R, K-R) Polybasic cleavage motif 
sequence required for high 
pathogenicity avian influ-
enza viruses

H5Nx [221–228]
H7Nx [229–231]

K387I K388I Decreased pH of fusion, 
increased HA stability, 
increased replication 
efficiency and virulence 
in mice

H5N1 [130, 232, 233]

K393E K394E Increased pH of fusion, 
decreased HA stability, 
decreased virulence in 
mice

H7N9 [234]

E83K, S128P E75K, S123P Increased virus binding to 
α2–6

H5N1 [204]

E83K, S128P, R496K E75K, S123P, R497K Increased virus binding to 
α2–6

H5N1 [204]
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Table 1  (continued)

Mutation/motif Phenotype Subtypes tested References

H3  numberinga H5  numberingb

E83K, S128P, N197K, 
R496K

E75K, S123P, N193K, 
R497K

Increased virus binding to 
α2–6

H5N1 [204]

E83K, N197K E75K, N193K Increased virus binding to 
α2–6

H5N1 [204]

E83K, N197K, R496K E75K, N193K, R497K Increased virus binding to 
α2–6

H5N1 [204]

E83K, R496K E75K, R497K Increased virus binding to 
α2–6

H5N1 [204]

H110Y, T160A, Q226L, 
G228S

H103Y, T156A, Q222L, 
G224S (with PB2: E627K; 
PB1: H99Y)

Airborne transmissible in 
ferrets

H5N1 [15, 58]

S114R, T115I S107R, T108I Increased virulence in chick-
ens and mice, increased pH 
of fusion

H5N1 [235]

S128P, N197K S123P, N193K Increased virus binding to 
α2–6

H5N1 [204]

S128P, N197K, R496K S123P, N193K, R497K Increased virus binding to 
α2–6

H5N1 [204]

S128P, R496K S123P, R497K Increased virus binding to 
α2–6

H5N1 [204]

∆c, A138V L129V, A134V Increased virus binding to 
α2–6

H5N1 [236]

∆, I155T L129del, I151T Increased virus binding to 
α2–6

H5N1 [214, 236]

S137A, T192I S133A, T188I Increased pseudovirus bind-
ing to α2–6

H5N1 [44]

G143R, N186K G139R, N182K Decreased binding to α2–3, 
increased virus binding to 
α2–6

H5N1 [46, 204]

N158D, N224K, Q226L, 
T318I

N154D, N220K, Q222L, 
T315I

Transmissible among ferrets H5N1 [14]

N158S, Q226L N154S, Q222L Increased virus binding to 
α2–6

H5N1 [237]

N158S, Q226L, N248D N154S, Q222L, N244D Increased virus binding to 
α2–6

H5N1 [237]

S159N, T160A S155N, T156A Increased virus binding to 
α2–6

H5N1 [201, 209]

S159N, T160A, S227N S155N, T156A, S223N Increased virus binding to 
α2–6, reduced lethality and 
systemic spread in mice

H5N1 [238]

T160A, K193T, N224K, 
Q226L

T156A, K189T, N220K, 
Q222L

Increased virus binding to 
α2–6

H5N1 [213]

T160A, Q226L T156A, Q222L Increased virus binding to 
α2–6

H5N1 [201, 209]

T160A, Q226L, G228S T156A, Q222L, G224S Increased virus binding to 
α2–6

H5N1 [201, 209, 239]

T160A, S227N T156A, S223N Increased virus binding to 
α2–6

H5N1 [201, 209]

V186N, N228K V182N, N224K Increased virus binding to 
α2–6

H7N9 [51]

V186K/G, K193T, G228S V182 K/G, K189T, G224S Increased virus binding to 
α2–6

H7N9 [51]

V186N, N224K, G228S V182N, N220K, G224S Increased virus binding to 
α2–6

H7N9 [51]
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Table 1  (continued)

Mutation/motif Phenotype Subtypes tested References

H3  numberinga H5  numberingb

N186K, Q196R, Q226L, 
S227N, G228S

N182K, Q192R, Q222L, 
S223N, G224S

Increased virus binding to 
α2–6

H5N1 [46]

N186K, Q226L, S227N, 
G228S

N182K, Q222L, S223N, 
G224S

Increased virus binding to 
α2–6

H5N1 [46]

N186K, Q226L, G228S N182K, Q222L, G224S Increased virus binding to 
α2–6

H5N1 [46]

E187G, E190D, K193S, 
Q226L, G228S

E183G, E186D, K189S, 
Q222L, G224S

Increased virus binding to 
α2–6

H5N1 [240]

E187G, Q226L,G228S E183G, Q222L,G224S Increased virus binding to 
α2–6

H5N1 [47]

D187G, S227N D183G, S223N Increased virus binding to 
α2–6

H5N1 [47]

T189A, G192R T185A, G188R Enhanced replication in 
ferrets, transmitted via 
aerosols among ferrets

H9N2 (with human 
H3N2 backbone)

[241]

E190G, Q226E, G228S E186G, Q222E, G224S Increased virus binding to 
α2–6

H5N1 [47]

K193T, G228S K189T, G224S Dual α2–3 and α2–6 binding H7N9 [51]
K193R, Q226L, G228S K189R, Q222L, G224S Increased virus binding to 

α2–6
H5N1 [239, 240]

Q196R, Q226L, S227N, 
G228S

Q192R, Q222L, S223N, 
G224S

Increased virus binding to 
α2–6

H5N1 [46]

Q196R, Q226L, G228S Q192R, Q222L, G224S Increased virus binding to 
α2–6

H5N1 [46, 47]

Q196R, S227N Q192R, S223N Increased virus binding to 
α2–6

H5N1 [46, 47]

N197K, R496K N193K, R497K Increased virus binding to 
α2–6

H5N1 [204]

K222Q, S227R K218Q, S223R Increased virus binding to 
α2–3 and α2–6

H5N1 [242]

N224K, G228S N220K, G224S Increased virus binding to 
α2–6

H7N9 [51]

Q226L, S227N, G228S Q222L, S223N, G224S Increased virus binding to 
α2–6

H5N1 [46]

Q226L, G228S Q222L, G224S Increased virus binding to 
α2–6

H4N6 [50]

Increased virus binding to 
α2–6; decreased antiviral 
response in host; reduced 
tissue tropism in guinea 
pigs

H5N1 [45–47, 201, 206, 209, 
215, 237, 239, 240, 
243, 244]

Increased virus binding to 
α2–6

H7N7 (human isolate) [245]

Loss of binding to α2–3, no 
gain of binding to α2–6

H10N8 (human isolate) [53, 216, 217]

Single mutations are presented first followed by motifs involving multiple mutations. Individual markers and motifs are listed in numerical order 
for ease of identifying mutation of interest
a Mutation/location H3 numbering relative to A/Aichi/2/1968 (H3N2)
b Mutation/location H5 numbering relative to A/Vietnam/1203/2004 (H5N1)
c ∆ indicates amino acids present in A/H5 but are deleted compared to A/H3
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Receptor binding specificity

The HA protein initiates influenza virus infections by rec-
ognizing and binding to sialylated glycans on the surface of 
host cells. Distribution and type of sialic acid residues in 
the host respiratory tract and the receptor binding prefer-
ence of AIVs are major determinants of viral host range and 
transmissibility [29–32]. AIVs typically bind to sialic acids 
in α2,3 linkage to galactose, whereas human adapted viruses 
bind sialic acids in α2,6 linkage. While the respiratory tract 
of humans contains both linkages of sialic acids, α2,6 link-
ages are more abundant on the surface of epithelial cells 
lining the upper respiratory tract, allowing for the spread of 
human adapted viruses through the production of aerosols 
by sneezing and coughing [33, 34]. α2,3 linkages are mainly 
found in the lower respiratory tract of humans, permitting 
infection with AIVs but restricting transmission [35]. In 
contrast, avian species have both α2,6 and α2,3 linked sialic 
acids in their respiratory and intestinal tracts, though abun-
dance and distribution differs between species [36–39]. Gen-
erally, epithelial cells with α2,3 linkages are more abundant 
in the avian intestinal tract, facilitating transmission via the 
fecal–oral route.

A switch in binding preference from α2,3 “avian-type” 
receptors to α2,6 “human-type” receptors is considered a 
key factor for pandemic potential of AIVs. There are numer-
ous HA mutations that, individually or in combination, 
affect viral receptor binding preference, pathogenicity and 
transmissibility [40]. Two mutations, E190D and G225D, 
increase the preference for “human-type” receptors in both 
the 1918, “Spanish” A/H1N1 pandemic virus and the 2009 
A/H1N1 “Swine Flu” pandemic virus [41, 42]. However, 
the impact of these mutations on other AIVs appears to be 
subtype specific [43–45]. A single G225D mutation alters 
the receptor preference of an A/H6N1 virus isolated from a 
human in Taiwan to bind α2,6 human-type receptors [43] In 
contrast, while the same single substitution in A/H5 viruses 
does not increase affinity for α2,6 glycans [44–46], E190G 
produces a dual α2,3/α2,6 receptor binding phenotype [47]. 
Double E190D/G225D mutants have minimal binding to 
either α2,3 or α2,6 glycans in both A/H5 and A/H6 sub-
types [43–45].

Unlike the 1918 and “Swine Flu” pandemic viruses, the 
1957 “Asian” pandemic A/H2N2 virus and the 1968 “Hong 
Kong” A/H3N2 pandemic virus gained dual Q226L/G228S 
mutations [31, 48]. Both Q226L and G228S mutations have 
a profound effect on the HA receptor specificity for a large 
range of AIV subtypes. Individually, Q226L decreases, or 
completely negates, HA affinity for α2,3 “avian-type” recep-
tors in several subtypes, namely A/H4, A/H5, A/H7, A/H9, 
and A/H10 [46, 49–53]. However, the effect of Q226L on 
α2,6 binding preference varies. In A/H5, A/H7, and A/H10 
subtype AIVs, Q226L either mildly enhances, or does not 

influence, α2,6 binding [45, 46, 52, 53]. Conversely, Q226L 
substantially increases HA preference for α2,6 “human-
type” receptors in A/H4 and A/H9 subtype AIVs [49, 50, 
54]. In contrast to Q226L, a singular G228S mutation in 
A/H5 subtype isolates produces a dual binding phenotype, 
increasing α2,6 binding and maintaining α2,3. Therefore, 
the combination of Q226L/G228S dual mutations decreases, 
or even ablates, α2,3 binding while simultaneously increas-
ing affinity for α2,6. However, this elegant switch does not 
hold true for all subtypes. For instance, single Q226L or 
dual Q226L/G228S mutations in a human A/H10N8 iso-
late significantly decrease α2,3 binding with only a minimal 
increase in α2,6 affinity [33, 34]. In addition, a number of 
other HA mutations, individually or in combination, affect 
viral receptor binding preference, pathogenicity and trans-
missibility, and more work is necessary to understand the 
risk of these mutations in all subtypes of concern.

Overall, the variable effect of HA mutations on AIV 
receptor binding preference between different AIV subtypes 
likely occurs due to differences in the HA receptor bind-
ing site (RBS). Four key structural elements are present in 
the HA RBS of all AIV subtypes: the 130-loop, 150-loop, 
190-helix, and 220-loop. Conformation and amino acid 
composition of these structures is a primary determinant of 
HA receptor specify. Therefore, the variability of RBS loop 
length and amino acid composition between AIV subtypes 
could account for the variable effects observed with the same 
mutations in the RBS [40].

pH of fusion and HA stability

HA stability, or pH of fusion, refers to the pH required to 
trigger an irreversible conformational change in the HA1/
HA2 trimer that activates the HA2 fusion peptide to medi-
ate the fusion of the viral and endosomal membranes. This 
fusion creates pores through which viral ribonucleoproteins 
(RNPs) can exit the endosome, initiating AIV infection in 
the cytoplasm of the host cell. Following internalization, 
the endosome progressively becomes more acidic until the 
contents are destroyed in the host lysosome [55]. Therefore, 
pH of fusion dictates the efficient timing of the release of 
viral RNPs. If released too early, host cell recognition of 
viral products heightens host antiviral response, attenuating 
viral infection [56, 57]. If released too late, endosomal con-
tents are destroyed, preventing release of viral products. The 
optimal pH of fusion varies substantially. In avian species, 
optimal pH of fusion can differ dramatically; however, a pH 
of fusion above 5.5 is believed to enhance AIV replication 
and transmission. In humans and ferrets, increased stability 
with a pH of fusion of less than 5.5 favors replication [28].

Understanding mutations affecting HA stability is vitally 
important since pH of fusion may partly contribute to the 
ability of AIVs to transmit by aerosol droplet in the ferret 
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model [14, 15]. In subtype A/H5, a H103Y mutation sta-
bilizes the HA, possibly increasing transmissibility [58]. 
A separate mutation, K387I, decreases the pH of fusion, 
increasing viral replication efficiency and virulence in mice 
while attenuating virulence in ducks [59]. A comprehen-
sive list of mutations affecting HA stability can be found in 
publications by Russell [60] and Mair et al. [61]; however, 
the overall biological significance of pH of fusion requires 
further investigation. Therefore, mutations that affect pH sta-
bility without experimentally verified effects on viral repli-
cation efficiency, transmissibility, or pathogenicity have not 
been included in the inventory.

Neuraminidase (NA; Table 2)

Viral infectivity and release from host cells

Neuraminidase (NA) is the second major transmembrane 
protein present on the influenza virus surface [62]. NA is 
a sialidase, cleaving sialic acid from glycoproteins, which 
enables virions to move through the mucus lining epithelial 
cells to initiate viral infections [63, 64], as well as mediating 
the release of progeny virions from the surface of infected 
cells [65]. HA and NA need to operate in equilibrium for 
efficient viral replication (reviewed in [66]) and perturba-
tions can result in decreased viral infectivity and replica-
tion. For instance, a reduction in NA expression on seasonal 
human influenza viruses by experimentally introduced muta-
tions in the viral promoter decreases virulence in mice [67]. 
Additionally, deletions in the NA stalk domain, the area 
between the enzymatically active head and the hydrophobic, 
envelope region, inhibit sialidase activity of NA, and alter 
HA binding and viral infectivity [68–70]. NA stalk length 
varies considerably between AIVs and a shortening of this 
domain is associated with adaptation of AIVs from wild 
birds to domestic poultry [71, 72]. A nineteen amino acid 
NA stalk deletion is commonly observed in highly patho-
genic A/H5N1 viruses, and this deletion associates with 
enhanced replication capacity in mice [53, 54]. Similarly, 
experimentally introduced NA stalk deletions in A/H1N1, A/
H7N1, A/H9N2 and A/H7N9 subtypes increase viral patho-
genicity in mice and/or chickens [71, 73–78].

Antiviral susceptibility and resistance

The function of NA is essential for productive AIV infec-
tion, as exemplified by conserved NA catalytic sites across 
influenza virus strains. Developed as antivirals in the 1990s, 
neuraminidase inhibitors (NAIs) bind to this active site of 
NA and prevent the release of new viruses from the surface 
of the infected host cell. While these antiviral compounds 
have been used successfully for several decades, the preva-
lence of NAI resistance is increasing [79]. Environmental 

contamination with NAIs is also a recent concern, increasing 
the possibility of NAI resistance in AIVs from wild birds 
and domestic poultry [80]. The majority of NA mutations in 
this updated inventory are markers associated with resistance 
to the major NAIs currently in use globally: oseltamivir, 
zanamivir, laninamivir, and peramivir. The WHO-AVWG 
periodically releases a comprehensive table of mutations 
shown to affect NAI susceptibility in seasonal human influ-
enza viruses (including both A and B genera viruses) as well 
as in subtype A/H5N1 and A/H7N9 AIVs [18]. The NA 
table (Table 2) provides a summary of WHO-AVWG NAI 
susceptibility markers for A/H5N1 and A/H7N9 viruses.

Proteins of the ribonucleoprotein complex: 
PB2, PB1, PA, and NP

Inside the viral envelope, the eight genomic viral RNA 
(vRNA) segments of influenza A viruses form part of the 
viral ribonucleoprotein complex (vRNP). The vRNP con-
sists of vRNA associated with multiple copies of the nucle-
oprotein (NP), and an RNA-dependent RNA polymerase 
sub-complex (RdRP), formed by polymerase basic protein 
2 (PB2), polymerase basic protein 1 (PB1), and the poly-
merase acidic protein (PA). Cryo-EM and crystal structures 
of the RdRP show that PB1 forms the core of the struc-
ture, associating with PA via its N-terminal and PB2 via it’s 
C-terminal [81–83]. Subunits of the RdRP associate with the 
5′ and 3′ ends of viral RNA and with NP. The RdRP is cru-
cial for viral transcription and replication, producing vRNA, 
complementary RNA and viral messenger RNA (mRNA) 
(reviewed in [84, 85]). The synthesis of viral mRNA is 
dependent on RdRP cap snatching. Whereby, PB2 binds 
the 5′ cap of host RNA polymerase II transcripts [86–89], 
10–13 nucleotides are cleaved by the endonuclease site of 
PA, and PB1 uses the cleaved fragment as a primer to initi-
ate transcription [90]. Cap snatching not only facilitates the 
translation of viral mRNA, it also inhibits the production of 
host mRNA, referred to as host shutoff [91, 92]. Mutations 
that hinder AIV cap snatching ability affinity of vRNP pro-
teins can affect viral replicative capacity and, consequently, 
AIV virulence.

Mutations that increase the polymerase activity of AIVs 
are important for the adaptation of AIVs to mammalian 
hosts [84]. In a number of studies, the polymerase activ-
ity of AIVs is impaired in mammalian cell lines [93]. This 
reduction in polymerase activity limits the transcription of 
viral RNA resulting in less viral material available to be 
packaged into progeny viruses. Additionally, limited replica-
tion capacity reduces viral genomic mutation, hindering the 
ability of AIVs to create progeny with beneficial mutations. 
A number of mutations in proteins of the polymerase com-
plex enhance the replicative capacity of AIVs in mammalian 
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Table 2  Experimentally verified molecular markers/motifs in the neuraminidase (NA; segment 6) gene of avian influenza viruses associated with 
enhanced virulence and antiviral resistance

Mutation/motif (N2  numberinga) Phenotype Subtypes tested References

49–68  deletionb Enhanced virulence in mice H5N1 (with H1N1 backbone) [73]
[74]

Enhanced virulence in mice H7N9 (human isolate) [75]
54–72 deletion Enhanced virulence in mice but not chickens H5N1 [72]

Enhanced virulence in mice H7N9 (human isolate) [75]
Enhanced virulence in mice and chickens H1N1 (avian) [71]

54–73 deletion Enhanced virulence in mice H7N9 (human isolate) [75]
54–75 deletion Enhanced virulence in chickens but not ducks H7N1 [76]
54–81 deletion Enhanced replication in chicken, but not duck, cell line. 

Enhanced replication in respiratory tract of chickens.
H2N2 [246]

57–65 deletion Enhanced virulence in mice H7N9 (human isolate) [77]
V116A Reduced susceptibility to oseltamivir and zanamivir H5N1 [247, 248]
I117T Reduced susceptibility to oseltamivir and zanamivir H5N1 [249]
E119A Reduced susceptibility to zanamivir H4N2 [250]

Reduced susceptibility to oseltamivir and zanamivir H5N1 [251, 252]
Reduced susceptibility to oseltamivir, zanamivir, per-

amivir, and laninamivir
H7N9 [253]

E119D Reduced susceptibility to zanamivir H4N2 [250]
Reduced susceptibility to oseltamivir, zanamivir, and 

peramivir
H5N1 [251]

Reduced susceptibility to oseltamivir, zanamivir, per-
amivir, and laninamivir

H7N9 [253]

Reduced susceptibility to zanamivir H9N2 [254]
E119G Reduced susceptibility to zanamivir H4N2 [250]

Reduced susceptibility to zanamivir and peramivir H5N1 [251]
Reduced susceptibility to zanamivir, peramivir, and 

laninamivir
H7N9 [253]

Q136L Reduced susceptibility to oseltamivir and zanamivir H5N1 [255]
Reduced susceptibility to zanamivir, permaivir, and 

laninamivir
H7N9 [253]

R152K Reduced susceptibility to laninamivir H7N9 [253]
D198G Reduced susceptibility to oseltamivir and zanamivir H5N1 [256]
I222M Reduced susceptibility to oseltamivir H5N1 [256]
I222K Reduced susceptibility to oseltamivir, zanamivir, per-

amivir, and laninamivir
H7N9 [253]

I222R Reduced susceptibility to oseltamivir and laninamivir H7N9 [253]
S246N Reduced susceptibility to oseltamivir H5N1 [248]
T247P Reduced susceptibility to oseltamivir and zanamivir H7N9 [253]
H274Y Reduced susceptibility to oseltamivir and peramivir H5N1 [251–253, 256–258]

Reduced susceptibility to oseltamivir H7N9 [253]
E276D Reduced susceptibility to oseltamivir, zanamivir, per-

amivir, and laninamivir
H7N9 [253]

E277Q Reduced susceptibility to oseltamivir H5N1 [259]
R292K Reduced susceptibility to zanamivir H4N2 [250]

Reduced susceptibility to oseltamivir H6N2 [260]
Reduced susceptibility to oseltamivir, zanamivir, per-

amivir, and laninamivir
H7N9 [261, 262]

Reduced susceptibility to oseltamivir H9N2 [254]
N294S Reduced susceptibility to oseltamivir, zanamivir, and 

peramivir
H5N1 [251, 252, 257, 263]

Reduced susceptibility to zanamivir H7N9 [253]
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cells. However, these increases in polymerase activity and/or 
replicative capacity do not always correlate with an increase 
in viral pathogenicity [94].

Polymerase basic protein 2 (PB2; Table 3)

Mutations in the PB2 protein, namely one mutation—
the substitution of glutamate with lysine at position 627 
(E627K)—are, by far, the best-known mutations in the poly-
merase complex proteins to be associated with increases in 
viral fitness [95]. Avian viruses typically have glutamate at 
this position and the substitution with lysine arises during 
adaptation to replication in mammalian species and sup-
ports transmission [96, 97]. E627K increases viral poly-
merase activity and replication in mammalian cell lines at 
temperatures similar to those of the upper respiratory tract 
of humans (~ 33 °C), a trait that increases transmissibility of 
AIVs in mammals [98–100]. This mutation increases viru-
lence of A/H5N1, A/H6N1, A/H7N7, A/H7N9, and A/H9N2 
AIVs in mammalian models of disease [101–105]. In con-
trast, E627K decreases, or has no effect, on AIV virulence in 
chickens [106–108]. Interestingly, position 627 is situated on 
the surface of PB2 [84, 95, 109], and, therefore, mutations at 
this position influence the association of PB2 with interact-
ing partners e.g., NP, importin α, and ANP32A [110–112]. 
However, the exact mechanism behind the influence of posi-
tion 627 on AIV host range remains unknown. Indeed, other 
mutations in PB2 aside from E627K include, but are not 
limited to: T271A, K526R, A588V, Q591K, E627V, D701N, 
D701V, and S714R. All of these mutations increase viral 
polymerase activity in mammalian cell lines for multiple 
AIV subtypes. Combinations of these mutations, such as 
E627K/D701N/S714R, can also further enhance viral poly-
merase activity, replication and virulence [102].

PB2 also potentially antagonizes the host interferon (IFN) 
response. A subset of AIVs contain PB2 proteins with an 
N-terminal mitochondrial targeting signal (MTS) that facili-
tates import of PB2 into the mitochondrial matrix [66, 67]. 
Mitochondrial PB2 then antagonizes host IFN production 
by interfering with the action of mitochondrial antiviral 
signaling proteins (MAVS) [113, 114]. Disruption of the 
MTS through a single amino acid substitution at position 
9 prevents mitochondrial localization of PB2, heightening 
host IFN response and attenuating viral virulence [115, 116]. 
Asparagine (N9) or threonine (T9) at position 9 facilitates 
import of PB2 into the mitochondrial matrix. N9 is typi-
cally present in human seasonal viruses (A/H1N1 prior to 
2009, A/H2N2, and A/H3N2). In contrast, AIVs typically 
have aspartic acid at positon 9 (D9), and AIV PB2s are 
non-mitochondrial and predominantly found in the nucleus. 
Experimentally mutating seasonal human influenza viruses 
to contain the non-mitochondrial D9 heightens production 
of IFN-β and attenuates pathogenicity in mice [115]. Con-
versely, mutating avian A/H5N1 to contain N9 increases 
pathogenicity in mice, though specific cellular localization 
was not investigated [116].

Polymerase basic protein 1 (PB1; Table 4) 
and polymerase protein (PA; Table 5)

Mutations in PB1 and PA affect viral replicative capacity 
and polymerase activity by altering the affinity between 
components of the RdRP [86–92]. A number of single 
amino acid substitutions increase AIV virulence in mice, 
PB1: K577E, D622G; PA: V63I, T97I, K142N/E, K356R, 
S421I, R443K, and K615N. Of these mutations PB1: 
N105S, K577E and PA: T97I, K356R also increase AIV 
polymerase activity in mammalian cell lines at 33 °C (a 

Single mutations are presented first followed by motifs involving multiple mutations. Individual markers and motifs are listed in numerical order 
for ease of identifying mutation of interest
a Mutation/location N2 numbering relative to A/Aichi/2/1968 (H3N2)
b Deletions are numbered according to alignments with A/Goose/Guangdong/1/1996 (H5N1)

Table 2  (continued)

Mutation/motif (N2  numberinga) Phenotype Subtypes tested References

R371K Reduced susceptibility to oseltamivir, zanamivir, per-
amivir, and laninamivir

H7N9 [253]

A401T Increased virus binding to α2–3 H7N9 [264]
K432T Reduced susceptibility to zanamivir H5N1 [265]
I117V, I314V Reduced susceptibility to oseltamivir H5N1 [247]
E119V, E222V Reduced susceptibility to oseltamivir H7N9 [266]
E119A/D/G, H274Y Reduced susceptibility to oseltamivir, zanamivir, and 

peramivir
H5N1 [251]

I222L, S246N Reduced susceptibility to oseltamivir H5N1 [265]
I222M/V, H274Y Reduced susceptibility to oseltamivir and peramivir H5N1 [256]
K150N, I222L, S246N Reduced susceptibility to oseltamivir H5N1 [248]
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Table 3  Experimentally verified molecular markers/motifs in the polymerase basic protein 2 (PB2; segment 1) gene of avian influenza virus 
associated with polymerase activity, virulence, and transmissibility

Mutation/motif Phenotype Subtypes tested References

D9Na Increased virulence in mice H5N1 [115, 116]
V25A Increased virulence in mice H5N1 backbone with H1N1 NS [267]
I63T Decreased pathogenicity in mice H5N1 [72]
E158G Increased polymerase activity in mam-

malian cell line, increased virulence in 
mice

H5N2 [268]
H5N9 [268]

E158K Increased polymerase activity and replica-
tion in mammalian cell line, increase 
virulence in mice

H4N6 [269]

E192K Increased polymerase activity in mam-
malian and avian cell line, increased 
virulence in mice

H5N1 [117]

A199S Increased virulence in mice H5N1 [116]
D253N Increased polymerase activity in mam-

malian cell line
H9N2 [270]

D256G Increased polymerase activity in mam-
malian cell line

H5N1 backbone with pH1N1 PB2 [271]

T271A Increase polymerase activity in avian and 
mammalian cell line

H3N2 (avian) [272]
H5N1 [273]
H7N9 [274]

I292V Increased polymerase activity in mam-
malian cell line, increased virulence in 
mice

H9N2 [275]

Increased polymerase activity in mam-
malian cell line

H10N8 [276]

E358V Decreased virulence in mice H7N3 [277]
K389R Increased polymerase activity and replica-

tion in mammalian cell line
H7N9 [278]

L339T Decreased polymerase activity and 
decreased virulence in mice

H5N1 [279]

K482R Increased polymerase activity in mam-
malian cell line

H7N9 [280, 281]

K526R Increased polymerase activity in mam-
malian cell line

H5N1 [282]
H7N9 [282]

M535L Increased polymerase activity in mam-
malian cell line

H7N9 [25]

A588V Increased polymerase activity and replica-
tion in mammalian and avian cell lines, 
increased virulence in mice

H7N9 [276]
H9N2 [276]
H10N8 [276]

Q591K Increased polymerase activity in mam-
malian and avian cell line, increased 
replication in mammalian cell line, 
increased virulence in mice

H5N1 [117, 283]

Increased polymerase activity in mam-
malian and avian cell lines

H7N9 [25, 274]

Increased polymerase activity and replica-
tion in mammalian cell line, increased 
virulence in mice

H9N2 [284]

V598T/I Increased polymerase activity and replica-
tion in mammalian cells, increased 
virulence in mice

H7N9 [278]
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Table 3  (continued)

Mutation/motif Phenotype Subtypes tested References

E627K Increased polymerase activity and replica-
tion in mammalian cell line, increase 
virulence in mice

H4N6 [269]

Enhanced polymerase activity, increased 
virulence in mice, contributes to air-
borne pathogenicity of IAVs in ferrets 
and contact transmission in guinea 
pigs. Decreases polymerase activity and 
replication in avian cell lines. Decreases 
virulence in chickens.

H5N1 [15, 100, 101, 106–108, 
116, 257, 271, 
285–289]

Increased polymerase activity in mam-
malian cell line, increased virulence in 
mice

H6N1 [103]

Increased polymerase activity in mamma-
lian cell lines, increase virulence in mice

H7N7 [102, 104]

Increased polymerase activity and replica-
tion in mammalian cell lines, increased 
virulence in mice

H7N9 [102, 105]

Increased polymerase activity in mam-
malian cell line, increased virulence in 
mice

H9N2 [102, 290]

E627V Increased polymerase activity and replica-
tion in mammalian cell lines, increased 
virulence in mice

H5N1 [117]

K627E Increased virulence in chickens H5N1 [291]
D701N Increased viral replication in mammalian 

cells and virulence in mice
H1N2 [220]

Increased polymerase activity, enhanced 
replication efficiency, increased viru-
lence and contact transmission in guinea 
pigs, increased virulence in mice

H5N1 [96, 117, 206, 292, 293]

Increased polymerase activity in mam-
malian cell line

H7N9 [25, 274]

Increased polymerase activity in mam-
malian cell line

H9N2 [102]

D701V Increased polymerase activity and replica-
tion in mammalian cell lines, increased 
virulence in mice

H5N1 [117]

S714R Increased polymerase activity and replica-
tion in mammalian cell line

H7N7 [94, 102, 124]

Increased polymerase activity in mam-
malian cell line

H9N2 [102]

S715N Decreased virulence in mice H5N1 [294]
M28I, A274T, K526R, I553V, L607V Decreased polymerase activity in mam-

malian cell line
H5N1 [295]

L89V, G309D Increased polymerase activity in mam-
malian cell line and increased virulence 
in mice

H5N1 [296]

L89V, G309D, T339K, R477G, 
I495V, K627E, A676T

Increased polymerase activity in mam-
malian cell line and increased virulence 
in mice

H5N1 [296]

M147L, E627K Increased polymerase activity in mamma-
lian cell line and virulence in mice

H9N2 [297]

I147T, K339T, A588T Increased polymerase activity in mamma-
lian cell line and virulence in mice

H5N1 [298]
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number of mutations were only tested at 37 °C) [117–119]. 
The mechanism behind changes in viral replication and 
virulence caused by these substitutions is not always 
clear. PA substitutions at positions 63, 97 and 142 could 
hinder RdRP cap snatching by reducing cleavage of host 
mRNA caps. Interestingly, four substitutions in PA at posi-
tions 142, 147, 171 and 182 that are associated with low 
polymerase activity of AIVs can drive the emergence of 
compensatory mutations in other RdRP proteins, as dem-
onstrated for the emergence of PB2 E627K in A(H7N9) 
viruses [120].

Interestingly, a combination of two mutations in PA, 
S224P and N383D, increase polymerase activity of a A/
H5N1 subtype virus and enhance viral replication in both 
mammalian and avian cell lines [121, 122]. This dual 
mutation also increases A/H5N1 AIV virulence in both 
mice and ducks. The mutations act in synergy, N383D 
increases AIV polymerase activity alone while the com-
bination of S224P and N383D significantly increases AIV 
virulence. This combination differs from previously men-
tioned mutations as single point mutations in polymerase 
proteins typically affect viral virulence in mammalian 
species, with minimal changes in the polymerase activ-
ity, replication or virulence in avian species. Some muta-
tions reportedly increase polymerase activity in avian and 

mammalian cell lines (PB2: A588V, Q591K; PB1: D3V, 
S678N). However, in these reports, only murine models 
were utilized to test AIV virulence.

Nucleoprotein (NP; Table 6)

The NP protein encapsulates viral genomic RNA and medi-
ates import into the nucleus to initiate viral replication 
through nuclear localization signals and the importin-α/
importin-β nuclear import pathway. Mutations that affect 
the functions of NP have not been extensively investigated; 
however, substitutions I41V, R91K, R198K, E210D, K227R, 
K229R, N319K, E434K, K470R enhance polymerase activ-
ity in mammalian cell lines [53, 94, 111, 123]. These muta-
tions do not always increase AIV virulence and the mecha-
nism behind the increase in viral replication is not always 
clear. One particular mutation, N319K, improves A/H7N7 
viral replication in mammalian cells by enhancing the inter-
action between NP and importin-α isoforms [94, 111, 124]. 
M105V, I109T, and A184K enhance viral replication and 
increase AIV virulence in chickens [125–127]. Interestingly, 
the M105V mutation may be involved in spillover adaption 
from ducks to chickens as M105V affects viral replication in 
embryo fibroblasts from chickens but not from ducks [127].

Table 3  (continued)

Mutation/motif Phenotype Subtypes tested References

K526R, E627K Increased polymerase activity and viral 
replication in mammalian cell lines, 
increased virulence in mice

H5N1 [282]

H7N9 [282]

E627K, D701N Increased polymerase activity in mam-
malian cell line

H7N9 [299]

E627K, S714R Increased polymerase activity in mam-
malian cell lines

H7N7 [102]
H7N9 [102]
H9N2 [102]

E627K, D701N, S714R Increased polymerase activity in mamma-
lian cells, increased virulence in mice

H9N2 [102]

D701N, S714R Increased polymerase activity in mam-
malian cell line, increased virulence in 
mice

H5N1 [300]

Increased polymerase activity in mam-
malian cell lines

H7N7 [102]

Increased polymerase activity in mam-
malian cell lines

H7N9 [102]

Increased polymerase activity in mam-
malian cell lines

H9N2 [102]

E627K (with HA: H110Y, T160A, 
Q226L, G228S; PB1: H99Y)

Enable airborne transmissibility between 
ferrets and contact transmission between 
guinea pigs

H5N1 [15, 58]

Single mutations are presented first followed by motifs involving multiple mutations. Individual markers and motifs are listed in numerical order 
for ease of identifying mutation of interest
a Mutations/motifs are numbered according to alignments with A/Goose/Guangdong/1/1996 (H5N1)
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Non‑structural proteins 1 and 2 (NS1/NS2; Table 7)

Influenza virus genomic segment 8 encodes for three viral 
proteins: NS1, NS2 (Nuclear Export Protein; NEP), and 
NS3. The NS3 protein was only recently identified and its 
function remains largely unknown, therefore, mutations in 
this protein are not included in the inventory [128]. The 
NS1 protein performs multiple functions that affect AIV 
replication and virulence (reviewed in [129]). Typically 
230 amino acids in length, NS1 ranges between 202 and 
238 amino acids in length as the C-terminus is frequently 
truncated or, occasionally, elongated [130]. Structurally, 
NS1 proteins contain an RNA-binding domain (RBD) at 
the N-terminus with a flexible linker region connecting the 

RBD to a C-terminal effector domain (ED). The RBD and 
ED are functional domains that mediate the associations 
between NS1 and interacting partners. NS1 interacts with 
the vRNP complex, specifically NP and PA, as well as a 
number of proteins involved in cellular signaling pathways, 
the host antiviral response, and nuclear/cytoplasmic traffick-
ing or translation of mRNA. Overall,NS1 is the major viral 
antagonist of the host IFN response and plays a role in host 
cell shutoff and viral replication [129].

Single amino acid substitutions, deletions, and C-terminal 
truncations in NS1 affect AIV replicative capacity and path-
ogenicity. Point mutations in NS1 decreasing the host anti-
viral response (in chickens, ferrets or mice), include: P42S, 
F89Y, V149A, N200S (with NS2: T47A—see below) and 

Table 4  Experimentally verified molecular markers/motifs in the polymerase basic protein 1 (PB1; segment 2) gene of influenza virus associated 
with polymerase activity, replication, virulence, and transmissibility

Single mutations are presented first followed by motifs involving multiple mutations. Individual markers and motifs are listed in numerical order 
for ease of identifying mutation of interest
a Mutations/motifs in both PB1 and PB1-F2 proteins are numbered according to alignments with A/Goose/Guangdong/1/1996 (H5N1)

Protein Mutation/motif Phenotype Subtypes tested References

PB1 D3Va Increased polymerase activity and viral rep-
lication in avian and mammalian cell lines

H5N1 [301]

N105S Increase polymerase activity and replica-
tion in mammalian cell line, increased 
virulence in mice

H5N1 [117]

K207R Decreased polymerase activity in mamma-
lian cell line

H5N1 [302]

Y436H Decreased polymerase activity in mam-
malian cell line; decreased virulence in 
ducks, ferrets and mice

H5N1 [302]

V473L Decreased polymerase activity and replica-
tion efficiency in mammalian cells

H1N1 with PB2, PB1, PA NP from H5N1 [303]

K577E Increased polymerase activity and virulence 
in mice

H9N2 [118]

V598P Decreased polymerase activity and replica-
tion efficiency in mammalian cells

H1N1 with PB2, PB1, PA NP from H5N1 [303]

D622G Increased polymerase activity and virulence 
in mice

H5N1 [304]

T677M Increased polymerase activity in mam-
malian cell line, decreased replication 
efficiency, decreased virulence in mice

H5N1 [72]

S678N Increased replication in avian and mamma-
lian cell lines

H7N7 [124]

V3A, N328K, N375S Decreased replication efficiency and viru-
lence in ferrets

H5N1 [93]

V473L, P598L Decreased polymerase activity and replica-
tion in mammalian cells

H1N1 with PB2, PB1, PA NP from H5N1 [303]

H99Y (with HA: H110Y, 
T160A, G226L, G228S; PB2: 
E627K)

Airborne transmissible in ferrets H5N1 [15, 58]

PB1-F2 N66S Enhanced replication, virulence and antivi-
ral response in mice

H5N1 [171, 305]

T51M, V56A, E87G Decrease polymerase activity, replication 
and virulence in ducks

H5N1 [173]
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G205R (with NS2: M51I—see below) [131–133]. Deletions 
and C-terminal truncations of NS1 occur commonly. Con-
temporary A/H5N1 subtype viruses have five amino acids 
deleted from position 80 to 84 (relative to A/goose/Guang-
dong/1996) associated with an increase in virulence in mice 
and chickens [134]. C-terminal truncations result in deletion 

of the NS1 PDZ domain, a four amino acid motif that modu-
lates protein–protein interactions with PDZ proteins impor-
tant for cellular signaling pathways [135]. Human influenza 
viruses typically contain the PDZ motifs RSKV or RSEV 
whereas avian viruses have ESEV or EPEV [136] and the 
influence of PDZ motifs on viral phenotype is host and strain 

Table 5  Experimentally verified molecular markers/motifs in the polymerase (PA; segment 3) gene of avian influenza viruses associated with 
polymerase activity, replication, virulence, and host inflammatory response

Single mutations are presented first followed by motifs involving multiple mutations. Individual markers and motifs are listed in numerical order 
for ease of identifying mutation of interest
a Mutations/motifs in both PA and PA-X proteins are numbered according to alignments with A/Goose/Guangdong/1/1996 (H5N1)

Protein Mutation/motif Phenotype Subtypes tested References

PA S37Aa Increased polymerase activity in mammalian cell line H7N9 [280]
A37S Decreased polymerase activity in mammalian cell line H7N7 [306]
V63I Increase polymerase activity and enhanced replication 

in mammalian cell line, increased virulence in mice
H7N7 [306, 307]

T97I Increased polymerase activity and replication in mam-
malian cell line, increased virulence in mice

H5N1 [117]

Increased polymerase activity in mammalian cell line 
and enhanced replication in mice

H5N2 [308]

Increased polymerase activity in mammalian cells H6N1 [103]
K142N/E Increased virulence in mice H5N1 [116]
K158R Increased polymerase activity in mammalian cell line H5N1 [301]
P190S Decreased virulence in mice H7N3 [277]
K356R Increase polymerase activity and enhanced replication 

in mammalian cell line, increased virulence in mice
H9N2 [119]

N383D Increased polymerase activity in mammalian and 
avian cell lines

H5N1 [121, 122]

Q400P Decreased virulence in mice H7N3 [277]
N409S Increased polymerase activity and replication in mam-

malian cell line
H7N9 [280]

S421I Increased virulence in mice H5N1 [116]
R443K Increased virulence in mice H5N1 [267]
K497R Increased polymerase activity in mammalian cell line H7N9 (human isolate) [281]
T515A Decreased polymerase activity in mammalian cell 

line, decreased virulence in ducks
H5N1 [302]

K615N Increased polymerase activity in mammalian cell line 
and increased virulence in mice

H7N7 [94, 124]

A343S, D347E Increased polymerase activity in mammalian cell line, 
increase virulence in mice

H5N1 [309]

P103H, S659L Decreased polymerase activity replication in mam-
malian cell line, decreased virulence in mice

H7N7 [310]

S224P, N383D Increased polymerase activity and enhanced viral 
replication in duck and mouse cell lines, increased 
virulence in mice and ducks

H5N1 [121, 122]

K142R, I147V, I171V, M182L Increased polymerase activity in mammalian cell line H7N9 [120]
V44I, V127A, C241Y, A343T, I573V Increased replication in mammalian cell line viru-

lence in mice
H5N1 [311]

S149P, H266R, I357K, S515T Increased polymerase activity in mammalian cell line H5N1 [295]
K356R (with PB2 E627K) Increase polymerase activity, enhanced replication 

capacity in mammalian cell line, increased viru-
lence in mice

H9N2 [119]

PA-X Truncations resulting in loss of PA-X expression Increased viral replication in mammalian and avian 
cell lines; increased inflammatory response in mice; 
increased virulence in mice, chickens, and ducks

H5N1 [121, 177, 
178, 182, 
183]

Decreased virulence in mice, inhibited host inflamma-
tory response

H9N2 [183]
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specific. The “avian” ESEV motif decreases viral replica-
tion in human and duck cell lines compared to the “human” 
RSKV motif, whereas these substitutions do not affect viru-
lence in chickens [137, 138]. Overall, the PDZ domain does 
not appear to be a major determinant of AIV pathogenicity. 
Indeed, PDZ deletions in the 2009 pandemic A/H1N1 virus 
as well as in avian A/H5N1 and A/H7N1 subtype AIVs do 
not significantly affect viral virulence [139, 140].

The NS2 protein, also referred to as the nuclear export 
protein (NEP) [141], regulates several factors, including: 
transcription and translation of viral products [142]; nuclear 
export of vRNP complexes [143]; and viral budding from 
host cells [144, 145]. NS2 regulates viral polymerase activ-
ity, enhancing the synthesis of viral cRNA, vRNA, and, in 
some cases, mRNA [142, 146]. Very few NS2 mutations 
that affect viral fitness and host adaptation are character-
ized in AIVs. Adaptive mutations described in a human A/
H5N1 isolate include M16I that, individually or in com-
bination with Y41C and E75G, increase viral polymerase 
activity in mammalian cell lines [146, 147]. Additionally, 
two combinations of NS1 and NS2 mutations, T47A with 
NS1 N200S and M51I with NS1 G205R, decrease the host 
antiviral response in ferrets [133]. However, the effect of 

these mutations on AIV pathogenicity is either negligible 
or unclear [146, 147].

Matrix protein (MP; Table 8)

Influenza virus genomic segment 7 (MP) encodes for the 
matrix 1 and 2 proteins (M1 and M2, respectively). M1 is 
located beneath the viral envelope where it associates with 
the lipid membrane and viral RNPs. This interaction needs 
to be ablated for viral RNP to enter the host cell cytoplasm 
[148, 149]. In the nucleus, M1 associates with vRNPs 
and mediates export into the cytoplasm [149]. M1 is also 
involved in viral assembly and budding [150]. M2 is a trans-
membrane protein present on the surface of influenza viri-
ons that acts as an ion channel, acidifying endosomes and 
contributing to the release of viral RNP into the cytoplasm 
[151]. The cytoplasmic domain of M2 is also involved in 
viral genome packaging for progeny viruses [152, 153]. 
Three more M proteins have also recently been identified: 
M3, M4 and M42 [154]; however, the functional roles of 
these proteins are not well established and currently no 
mutations have been shown to affect viral fitness so they are 
not included in this inventory.

Table 6  Experimentally verified molecular markers/motifs in the nucleoprotein (NP; segment 5) gene of influenza virus associated with poly-
merase activity, virulence, and transmissibility

Single mutations are presented first followed by motifs involving multiple mutations. Individual markers and motifs are listed in numerical order 
for ease of identifying mutation of interest
a Mutations/motifs are numbered according to alignments with A/Goose/Guangdong/1/1996 (H5N1)

Mutation/motif Phenotype Subtypes tested References

I41Va Increased polymerase activity in mammalian cell line H7N9 [299]
K91R Decreased polymerase activity in mammalian cell line H5N1 [123]
M105V Increased virulence in chickens H5N1 [126, 127]
I109T Increased polymerase activity and viral replication in chickens 

(but not ducks), increased virulence in chickens
H5N1 [126, 127]

A184K Increased replication in avian cells and virulence in chickens, 
enhanced IFN response

H5N1 [125]

K198R Decreased polymerase activity in mammalian cell line H5N1 [123]
E210D Increased polymerase activity in mammalian cell line H7N9 [299]
K227R Increased polymerase activity in mammalian cell line H5N1 [123]
K229R Increased polymerase activity in mammalian cell line H5N1 [123]
N319K Increased polymerase activity and replication in mammalian cell 

line
H7N7 [94, 111]

E434K Increased polymerase activity in mammalian cell line H9N2 [53]
K470R Increased polymerase activity and replication in mammalian cell 

line, increased virulence in mice
H5N1 [123]

Q357L (with PB2: E627K) Increased virulence in mice H5N1 [116]
E434K (with HA: Q227P, D375E) Enhanced contact transmission in guinea pigs H9N2 [53]
E434K (with HA: Q227P, PB2: D195N) Enhanced contact transmission in guinea pigs H9N2 [53]
R99K, S345N (with HA: H110Y, T160A, 

Q226L, G228S; PB2: E627K; PB1: H99Y, 
I368V

Airborne transmissible in ferrets H5N1 [15]



755Virus Genes (2019) 55:739–768 

1 3

Only a small number of mutations in segment 7 are asso-
ciated with host adaptation. All occur in the region encod-
ing the M1 protein. Four mutations, namely N30D, I43M, 

T139A and T215A, increase the virulence of A/H5N1 sub-
type AIVs in mice [155–157]. I43M also increases virulence 
in chickens and ducks; however, the underlying mechanisms 

Table 7  Experimentally verified molecular markers/motifs in the non-structural protein (NS; segment 8) gene of influenza virus associated with 
replication, virulence, pathogenicity, and antiviral response

Single mutations are presented first followed by motifs involving multiple mutations. Individual markers and motifs are listed in numerical order 
for ease of identifying mutation of interest
a Mutations/motifs in NS1 and NEP are presented with numbering relative to A/goose/Guangdong/1/1996 (H5N1)
b The CDC molecular inventory numbers NS1 mutations relative to A/Vietnam/1203/2014 (H5N1) which contains an NS1 deletion. For entries 
from the CDC inventory that uses alternate numbering, the numbering according to A/Vietnam/1203/2014 (H5N1) is included in brackets

Protein Mutation/motif Phenotype Subtypes tested References

NS1 P42Sa Increased virulence and decreased antiviral 
response in mice

H5N1 [131]

D74N Enhanced replication in mammalian cells and 
pathogenicity in mice

H7N1 backbone with H5N1 NS [312]

80–84 deletion Increased virulence in chickens H1N1 (avian) [313]
Increased virulence in chickens and mice H1N1 backbone with H5N1 HA, NA and NS [134]
Increased virulence in swine H1N1 backbone with H5N1 NS [314]

Y84F Decreases replication in mammalian cells and 
enhances interferon response

H1N1 with H5N1 NS [132]

D92E  [D87E]b Increased virulence in swine and mice H1N1 backbone with H5N1 NS [314, 315]
Increased virulence in chickens and mice H1N1 backbone with H5N1 HA, NA and NS [134]

I106M [I101M] Increased viral replication in mammalian cells 
virulence in mice

H1N1 with all internal genes from H7N9 [316]

C138F Increased replication in mammalian cells, 
decreased interferon response

H5N1 [317]

V149A Increased virulence and decreased interferon 
response in chickens

H5N1 [318]

L103F, I106M [L98F, I101M] Increased virulence in mice H5N1 [319, 320]
N205S (with NS2: T47A) Decreased antiviral response in ferrets H5N1 [133]
G210R (with: NS2 M51I) Decreased antiviral response in ferrets H5N1 [133]
P3S, R41K, D74N Enhanced replication in mammalian cells and 

pathogenicity in mice
H7N1 backbone with H5N1 NS [312]

R38A, K41A Decreased replication in mammalian and avian 
cell line

H7N1 [321]

K55E, K66E, C138F Enhanced replication in mammalian cells, 
decrease IF response

H5N1 [317]

222–230 deletion Increased replication in mammalian and avian 
cell lines

H5N1 [138]

225–230 deletion Increased viral replication in avian cell line H7N1 [130, 322]
No impact on viral replication in avian cell lines H7N1 [140]

227ESEV230 (PDZ domain) Increased virulence in mice H1N1 pdm09 virus with ‘avian’ PDZ motif [323]
Decreased viral replication in mammalian and 

avian cell lines
H5N1 [138]

Increased viral replication and virulence in mice, 
decreased viral replication in human and duck 
cell lines

H7N1 [137]

227RSKV230 (PDZ domain) Increased viral replication in human and duck 
cell lines but no effect in murine cells

H7N1 [137]

230–237 elongation Increased replication and inflammatory cytokine 
production in chickens

H9N2 [324]

NS2/NEP M16I Increased polymerase activity in mammalian 
cell line

H5N1 [325]

M16I, Y41C, E75G Increased polymerase activity in mammalian 
cell line

H5N1 [325]

T47A (with NS1: N205S) Decreased antiviral response in ferrets H5N1 [133]
M51I (with NS1: G2010R) Decreased antiviral response in ferrets H5N1 [133]
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remain unclear [157]. The M2 protein is an important target 
of antiviral compounds and mutations in this region con-
tribute to antiviral resistance phenotypes. Adamantanes 
(amantadine and rimantadine) block the M2 ion channel and 
inhibit early stages of virus replication. This class of drugs 
is no longer recommended against seasonal human influ-
enza as these viruses display a high degree of adamantine 
resistance. In addition, adamantine resistance is increasing 
in AIVs globally, including subtypes of major concern, such 
as A/H5 and A/H7 [158]. Well-known mutations associated 
with adamantane resistance in M2 include: L26F, V27A, 
A30V/T/S, S31N/G, and G34E [159–161].

Auxiliary proteins

PB1‑F2 (Table 4)

PB1-F2 is an auxiliary protein expressed in a majority 
of influenza A viruses and produced from a + 1 alternate 
reading frame of PB1 [162]. Full-length PB1-F2 is approx-
imately 90 amino acids in length, with frequent variation 
by truncation. Overall expression and length of PB1-F2 
affect influenza virus pathogenicity in both a host and 
strain dependent manner [163]. PB1-F2 induces host cell 
apoptosis, antagonizes the host antiviral innate immunity, 
enhances the production of pro-inflammatory cytokines, 
and affects viral polymerase activity (reviewed in [164]). 
Pro-apoptotic activity of PB1-F2 has been reported in 
human seasonal A/H1N1 influenza viruses but not in A/
H5N1 subtype AIVs [165]. The association between PB1-
F2, mitochondrial-associated proteins, and cellular factors 

also inhibits antiviral responses and enhances production 
of pro-inflammatory cytokines. Interaction of PB1-F2 with 
MAVS, TBK1 and IRF3. PB1-F2 inhibits the action of 
TBK1 and IRF3, downregulating host production of type 
1 interferon [166, 167]. Additionally, interaction between 
PB1-F2 and MAVS enhances TRAF6-mediated NF-kB 
activation, promoting the production of pro-inflammatory 
cytokines [168, 169]. In A/H5N1 subtype AIVs and human 
pandemic influenza viruses from 1918, 1957 and 1968, 
expression of full-length PB1-F2 heightens the inflamma-
tory response to infection in mice, rendering them more 
susceptible to secondary bacterial pneumonia [170].

Only a few PB1-F2 mutations in AIVs subtypes affect 
viral pathogenicity. Truncation of the A/H5N1 PB1-F2 
protein increases pathogenicity in mice [165, 171], but 
complete deletion of A/H5N1 PB1-F2 does not sig-
nificantly alter viral virulence [163, 171]. Perhaps the 
best-known PB1-F2 mutation, N66S, inhibits host inter-
feron production, increasing pro-inflammatory cytokine 
responses. However, these effects remain strain and host 
specific. For example, N66S in A/H5N1 subtype AIV 
enhances viral replication and pathogenicity in mice but 
not ducks [171]. Indeed, the few reports that analyze the 
effect of PB1-F2 expression in avian species show viral 
attenuation. PB1-F2 expression in A/H5N1 and A/H9N2 
subtype AIVs decreases viral pathogenicity in chickens, 
possibly through inducing the host immune response ear-
lier in chickens compared to mice [172]. Additionally, a 
combination of mutations T51M/V56A/E87G in PB1-F2 
decrease viral polymerase activity, replication, and viru-
lence in mallard ducks [173].

Table 8  Experimentally verified molecular markers/motifs in the matrix (M; segment 7) gene of influenza virus associated with virulence and 
antiviral resistance

Single mutations are presented first followed by motifs involving multiple mutations. Individual markers and motifs are listed in numerical order 
for ease of identifying mutation of interest
a Mutations/motifs in M1 and M2 proteins are presented with numbering relative to A/goose/Guangdong/1/1996 (H5N1)

Protein Mutation/motif Phenotype Subtypes tested References

M1 N30Da Increased virulence in mice H5N1 [156]
I43M Increased virulence in mice, chickens and ducks H5N1 [157]
T215A Increased virulence in mice H5N1 [156]

M2 L26F Increased resistance to amantadine and rimantadine H5N1 [159, 160, 326]
I/V27A/T/S Increased resistance to amantadine and rimantadine H5N1

H5N2
[159–161, 326, 327]

A30V/T/S Increased resistance to amantadine and rimantadine H5N1
H5N2
H7N2

[161, 326, 327]

S31N/G Increased resistance to amantadine and rimantadine H5N1
H5N2
H9N2

[160, 161, 326–330]

G34E Increased resistance to amantadine and rimantadine H5N1 [159]
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PA‑X (Table 5)

PA-X is a fusion protein comprised of 191N-terminal amino 
acids (including the endonuclease domain) and 61 amino 
acids from the C-terminus from segment 3 (PA) formed as 
the result of ribosomal frameshifting [174]. PA-X has plays a 
role in host shutoff [174–176], modulating the host immune 
response [174, 177–179], viral polymerase activity, viral 
replication, viral induced apoptosis, and virulence (reviewed 
in [180]). Approximately 75% of all influenza virus isolates 
possess a full-length PA-X sequence, with the remaining 
25% expressing PA-X truncations. These truncations of up 
to 41 amino acids in length most commonly occur in the 
PA-X C-terminus and are most commonly found in the 2009 
pandemic A/H1N1, canine A/H3N2 and A/H3N8, equine A/
H7N7, and bat influenza viruses. However, they also occur 
in some A/H5N1 and A/H9N2 subtype AIVs [181]. Overall, 
the function of PA-X appears to be subtype specific. In A/
H5N1 subtype AIV, loss of PA-X expression increases viral 
replication, host inflammatory response, and virulence in 
mice, chickens, and ducks [177, 178, 182]. In contrast, loss 
of PA-X in the A/H9N2 subtype limits the host inflammatory 
response and decreases virulence in mice [183].

Limitations and usage considerations of this 
molecular inventory

As stated in the methodology, this inventory was not 
intended as an exhaustive list so several caveats and limi-
tations need to be considered when utilizing these tables. 
First, the inventory only includes experimentally validated 
(in vitro or in vivo) markers/mutations. As stated previously, 
several studies utilize in silico approaches to predict molecu-
lar markers of viral adaptation to humans [22–26]. This work 
is extremely valuable and findings from these computational 
studies guide future research. Indeed, novel machine learn-
ing approaches have helped to identify novel markers and 
amino acid positions in human and avian influenza strains 
associated with pandemic potential [184, 185]. Further work 
on these novel mutations should be conducted in vitro and 
in vivo. Second, as stated in the text, changes in biological 
characteristics for specific point mutations and motifs are 
sometimes only associated with specific viral subtypes or 
hosts, so caution should be made when generalizing find-
ings for novel strains or hosts. Finally, consideration must 
be made for viral sequences themselves. Influenza viruses, 
like many other RNA viruses, replicate as a quasispecies, 
allowing for rapid changes in diversity and viral adaptation 
in response to environmental pressures [186]. The majority 
of molecular markers/motifs described in these studies come 
from consensus sequences which may not adequately reflect 
the entire population of viruses in a given sample. With the 

continual advancement of Next Generation Sequencing 
(NGS) and bioinformatics we are better able to understand 
how minority variants could contribute to pandemic poten-
tial of influenza strains. Indeed, recent work by Welkers 
et al. using NGS on human respiratory A/H5N1 samples 
identifies multiple single amino acid variants in all three pol-
ymerase subunits. In vitro analysis of these markers shows 
substantial increases in polymerase activity [187]. Therefore, 
we must move towards consideration of the influenza viral 
quasispecies as a whole when considering the dynamic evo-
lutionary and adaptive pathways/processes and the meaning 
and predictive power for zoonotic and/or pandemic potential.

Discussion/conclusions

Since the discovery of the Goose/Guangdong-lineage A/
H5 viruses in China in 1996, HPAIV of the A/H5N1 sub-
type have spread globally, causing numerous outbreaks in 
wild birds and poultry. Overall, 861 confirmed human A/
H5N1 infections have been reported with a case fatality rate 
of 52.8% [188]. In addition, newly emerged and emerging 
AIVs with zoonotic potential continue to appear, including 
subtypes A/H7N9, A/H7N4, A/H5Nx, A/H9N2, A/H10N7, 
and A/H10N8 [189–193]. As of June 2019, there have been 
1,568 human A/H7N9 cases reported with 616 deaths (CFR: 
39%) [194]. There have been 23 human cases of A/H5N6 
infection reported from 10 different provinces across main-
land China, of which 15 were fatal (CFR 65.2%) [195]. A 
single human non-fatal infection with an A/H7N4 subtype 
virus occurred in an elderly woman in Jiangsu, China in 
December 2017 [192, 196]. This virus is antigenically dis-
tinct from formerly circulating A/H7 strains, and, concern-
ingly, appears to be spreading across Southeast Asia, con-
tinually reassorting with other viruses in the region [197, 
198]. To date, none of the novel A/H7N4 viruses contains 
known amino acid mutations that confer adaptation of AIV 
to humans (e.g., PB2 627/701 or HA 186/226/228) or anti-
viral resistance. However, A/H7N4 isolated from Cambo-
dia does contain the M gene amino acid mutations N30D 
and T215A that increase pathogenicity of A/H5N1 virus in 
mice [198]. Due to the antigenic differences between the 
A/H7N4 viruses and other H7 lineages, including the A/
Anhui/1/2013-like A/H7N9 lineage, the continual spread, 
and risk for human infection, this newly detected A/H7N4 
lineage is now in preparation as a candidate vaccine virus 
for pandemic preparedness [199]. To date, no avian origin 
influenza viruses can transmit efficiently from human-to-
human via aerosols. Given the ongoing spillover of avian 
influenza viruses into domestic poultry, as well as the risk 
of human infection and potential for adaptation, continual, 
vigilant surveillance and risk assessment is vital to combat 
endemic and emerging AIVs. This inventory provides a list 
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of the currently known, experimentally verified mutations/
molecular markers affecting host adaptation in AIVs and can 
be utilized for molecular characterization and risk assess-
ment of novel AIV strains.
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