152 research outputs found

    Spin signatures of exchange-coupled triplet pairs formed by singlet fission

    Get PDF
    We study the effect of an exchange interaction on the magnetic-field-dependent photoluminescence in singlet fission materials. We show that, for strongly interacting triplet exciton pairs (intertriplet exchange interaction greater than the intratriplet spin-dipolar interaction), quantum beating and magnetic-field effects vanish apart from at specific magnetic fields where singlet and quintet levels are mixed by a level anticrossing. We characterize these effects and show that the absence of a magnetic-field effect or zero-field quantum beats does not necessarily mean that fission is inoperative. These results call for a reconsideration of the observations that are considered hallmarks of singlet fission and demonstrate how the spin coherence and exchange coupling of interacting triplet pairs can be measured through magneto-photoluminescence experiments.Engineering and Physical Sciences Research Council (Grant ID: EP/G060738/1)This is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevB.94.04520

    Critical light instability in CB/DIO processed PBDTTT-EFT:PC<inf>71</inf>BM organic photovoltaic devices

    Get PDF
    Organic photovoltaic (OPV) devices often undergo ‘burn-in’ during the early stages of operation, this period describing the relatively rapid drop in power output before stabilising. For normal and inverted PBDTTT-EFT:PC71BM OPVs prepared according to current protocols, we identify a critical and severe light-induced burn-in phase that reduces power conversion efficiency by at least 60% after 24 hours simulated AM1.5 illumination. Such losses result primarily from a reduction in photocurrent, and for inverted devices we correlate this process in-situ with the simultaneous emergence of space-chare effects on the μs timescale. The effects of burn in are also found to reduce the lifetime of photogenerated charge carriers, as determine by in-situ transient photovoltage measurements. To identify the underlying mechanisms of this instability, a range of techniques are employed ex-situ to separate bulk- and electrode-specific degradation processes. We find that whilst the active layer nanostructure and kinetics of free charge generation remain unchanged, partial photobleaching (6% of film O.D.) of PBDTTT-EFT:PC71BM occurs alongside an increase in the ground state bleach decay time of PBDTTT-EFT. We hypothesise that this latter observation may reflect relaxation from excited states on PBDTTT-EFT that do not undergo dissociation into free charges. Owing to the poor lifetime of the reference PBDTTT-EFT:PC71BM OPVs, the fabrication protocol is modified to identify routes for stability enhancement in this initially promising solar cell blend.The authors would like to thank SABIC for partially funding this research. PEH, EC, RHF and NCG thank the EPSRC for funding through the Supergen Supersolar Consortium (EP/J017361/1). PEH also thanks CKIK for additional funding. KD thanks the Gates Cambridge Scholarship fund. MAJ thanks Nyak Technology Ltd for PhD scholarship funding. AJP thanks David Lidzey (University of Sheffield) for use of a sample chamber for X-ray scattering measurements and Adam Brown (University of Cambridge) for UPS measurements.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.orgel.2015.12.02

    Oxygen Degradation in Mesoporous Al<inf>2</inf>O<inf>3</inf>/CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3-</inf><inf>x</inf>Cl<inf>x</inf> Perovskite Solar Cells: Kinetics and Mechanisms

    Get PDF
    The rapid pace of development for hybrid perovskite photovoltaics has recently resulted in promising figures of merit being obtained with regard to device stability. Rather than relying upon expensive barrier materials, realizing market-competitive lifetimes is likely to require the development of intrinsically stable devices, and to this end accelerated aging tests can help identify degradation mechanisms that arise over the long term. Here, oxygen-induced degradation of archetypal perovskite solar cells under operation is observed, even in dry conditions. With prolonged aging, this process ultimately drives decomposition of the perovskite. It is deduced that this is related to charge build-up in the perovskite layer, and it is shown that by efficiently extracting charge this degradation can be mitigated. The results confirm the importance of high charge-extraction efficiency in maximizing the tolerance of perovskite solar cells to oxygen.This work was supported by SABIC and by the EPSRC, including by the Supergen Supersolar Consortium (EP/J017361/1) and the European Union Seventh Framework Program [FP7 2007-2003] under grant agreement 604032 of the MESO project. GE is supported by the EPSRC and Oxford Photovoltaics Ltd. through a Nanotechnology KTN CASE award. JW acknowledges the Swire Educational Trust for supporting his D.Phil. study at Oxford. We thank Sian Dutton (University of Cambridge) for access to XRD facilities and Felix Deschler (University of Cambridge) for helpful discussions.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aenm.20160001

    Electroluminescence from Organometallic Lead Halide Perovskite-Conjugated Polymer Diodes

    Get PDF
    Organometallic lead perovskite-based solar cells can be converted to light-emitting diodes by engineering the current density. Diodes are fabricated with adjacent perovskite and conjugated polymer layers using orthogonal solvents. Under forward bias, these devices show simultaneous emission from both the luminescent conjugated polymer and the perovskite, providing direct information on electron and hole recombination as a function of device architecture and bias voltage.We gratefully acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC). A.K. acknowledges NRF-Singapore for a scholarship.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aelm.20150000

    Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering

    Get PDF
    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics.S.L. thanks AGS(O) Scholarship support from A*STAR Singapore. J.W. acknowledges financial support from MOE Tier 3 grant (MOE2014-T3-1-004). This work was supported by the Engineering and Physical Sciences Research Council, U.K. (Grant numbers EP/M005143/1 and EP/G060738/1). D.H.P.T. and N.D.M.H. acknowledge the Winton Programme for the Physics of Sustainability. K.C. and J.M.H. acknowledge support from a Rutherford Discovery Fellowship to J.M.H
    corecore