Perovskite/Colloidal Quantum Dot Tandem Solar Cells: Theoretical Modeling and Monolithic Structure

Abstract

Metal-halide perovskite-based tandem solar cells show great promise for overcoming the Shockley-Queisser single-junction efficiency limit via low-cost tandem structures, but so far they employ conventional bottom-cell materials that require stringent processing conditions. Meanwhile, difficulty in achieving low-bandgap (11% absolute gain) to the ultimate efficiency via photon recycling. We report initial experimental demonstration of a solution-processed monolithic perovskite/CQD tandem solar cell, showing evidence for subcell voltage addition. We model that a power-conversion efficiency of 29.7% is possible by combining the state-of-the-art perovskite and CQD solar cells

    Similar works