315 research outputs found

    Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    Get PDF
    Along mid-ocean ridges the extending crust is segmented1 on length scales of 10–1,000 km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries2 accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf3. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments

    The challenges of changing national malaria drug policy to artemisinin-based combinations in Kenya

    Get PDF
    Backgound: Sulphadoxine/sulphalene-pyrimethamine (SP) was adopted in Kenya as first line therapeutic for uncomplicated malaria in 1998. By the second half of 2003, there was convincing evidence that SP was failing and had to be replaced. Despite several descriptive investigations of policy change and implementation when countries moved from chloroquine to SP, the different constraints of moving to artemisinin-based combination therapy (ACT) in Africa are less well documented. Methods: A narrative description of the process of anti-malarial drug policy change, financing and implementation in Kenya is assembled from discussions with stakeholders, reports, newspaper articles, minutes of meetings and email correspondence between actors in the policy change process. The narrative has been structured to capture the timing of events, the difficulties and hurdles faced and the resolutions reached to the final implementation of a new treatment policy. Results: Following a recognition that SP was failing there was a rapid technical appraisal of available data and replacement options resulting in a decision to adopt artemether-lumefantrine (AL) as the recommended first-line therapy in Kenya, announced in April 2004. Funding requirements were approved by the Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM) and over 60 million US$ were agreed in principle in July 2004 to procure AL and implement the policy change. AL arrived in Kenya in May 2006, distribution to health facilities began in July 2006 coincidental with cascade in-service training in the revised national guidelines. Both training and drug distribution were almost complete by the end of 2006. The article examines why it took over 32 months from announcing a drug policy change to completing early implementation. Reasons included: lack of clarity on sustainable financing of an expensive therapeutic for a common disease, a delay in release of funding, a lack of comparative efficacy data between AL and amodiaquine-based alternatives, a poor dialogue with pharmaceutical companies with a national interest in antimalarial drug supply versus the single sourcing of AL and complex drug ordering, tendering and procurement procedures. Conclusion: Decisions to abandon failing monotherapy in favour of ACT for the treatment of malaria can be achieved relatively quickly. Future policy changes in Africa should be carefully prepared for a myriad of financial, political and legislative issues that might limit the rapid translation of drug policy change into action

    Seismicity of the Askja and Bárðarbunga volcanic systems of Iceland, 2009–2015,

    Get PDF
    A large seismic network deployed in the Icelandic highlands recorded >100,000 earthquakes from 2009 to 2015. We develop a local magnitude scale, appropriate for use in central Iceland, which is similar to the scale used by the Iceland Meteorological Office. Using this large catalogue of earthquakes, we analyze the spatial and temporal changes in seismicity rates and b-values. In microearthquakes recorded from the usually ductile lower crust we find that b-values are high, reflecting the presence of high thermal gradients and low stresses driving seismicity associated with the movement of melt. In contrast, b-values in the upper crust are variable. Low b-values, indicative of a high stress environment, are observed during seismic swarms such as those around Mt. Herðubreið and around Bárðarbunga caldera. A persistently seismically active area around a geothermal area within Askja caldera has a b-value around 1 but has a strong annual cycle of seismicity. We attribute the annual cycle to varying load from the snow cover modulating the seismicity. Seismicity driven by the intrusion of a large dyke has a b-value well above 1, driven by the high pore fluid pressures and thermal gradients around the dyke

    Tomographic image of melt storage beneath Askja Volcano, Iceland using local microseismicity

    No full text
    We use P wave and S wave arrivals from microseismic earthquakes to construct 3-D tomographic Vp and Vs images of the magma storage region beneath Askja's central volcano in the Northern Volcanic Zone of Iceland. A distinctive ellipsoidal low-velocity anomaly, with both Vp and Vsvelocities 8-12% below the background, is imaged at 6-11 km depth beneath the caldera. The presence of a shallow magma chamber is corroborated by geodetic and gravity studies. The small Vp/Vs anomaly suggests a lack of pervasive melt. We interpret this anomaly as a region of multiple sills, some frozen but hot, others containing partial melt. A second, smaller low-velocity anomaly beneath the main magma storage region may represent a magma migration pathway. This interpretation is supported by the close proximity to the anomaly of clusters of deep, magmatically induced earthquakes. However, the location and shape of this deep anomaly are poorly constrained by the current data set

    Risk Factors for Optic Disc Hemorrhage in the Low-Pressure Glaucoma Treatment Study

    Get PDF
    PurposeTo investigate risk factors for disc hemorrhage detection in the Low-Pressure Glaucoma Treatment Study.DesignCohort of a randomized, double-masked, multicenter clinical trial.MethodsLow-Pressure Glaucoma Treatment Study patients with at least 16 months of follow-up were included. Exclusion criteria included untreated intraocular pressure (IOP) of more than 21 mm Hg, visual field mean deviation worse than −16 dB, or contraindications to study medications. Patients were randomized to topical treatment with timolol 0.5% or brimonidine 0.2%. Stereophotographs were reviewed independently by 2 masked graders searching for disc hemorrhages. The main outcomes investigated were the detection of disc hemorrhage at any time during follow-up and their recurrence. Ocular and systemic risk factors for disc hemorrhage detection were analyzed using the Cox proportional hazards model and were tested further for independence in a multivariate model.ResultsTwo hundred fifty-three eyes of 127 subjects (mean age, 64.7 ± 10.9 years; women, 58%; European ancestry, 71%) followed up for an average ± standard deviation of 40.6 ± 12 months were included. In the multivariate analysis, history of migraine (hazard ratio [HR], 5.737; P = .012), narrower neuroretinal rim width at baseline (HR, 2.91; P = .048), use of systemic β-blockers (HR, 5.585; P = .036), low mean systolic blood pressure (HR, 1.06; P = .02), and low mean arterial ocular perfusion pressure during follow-up (HR, 1.172; P = .007) were significant and independent risk factors for disc hemorrhage detection. Treatment randomization was not associated with either the occurrence or recurrence of disc hemorrhages.ConclusionsIn this cohort of Low-Pressure Glaucoma Treatment Study patients, migraine, baseline narrower neuroretinal rim width, low systolic blood pressure and mean arterial ocular perfusion pressure, and use of systemic β-blockers were risk factors for disc hemorrhage detection. Randomization assignment did not influence the frequency of disc hemorrhage detection

    Strike-slip faulting during the 2014 Bároarbunga-Holuhraun dike intrusion, central Iceland

    Get PDF
    Over a 13 day period magma propagated laterally from the subglacial Bárðarbunga volcano in the northern rift zone, Iceland. It created > 30,000 earthquakes at 5–7 km depth along a 48 km path before erupting on 29 August 2014. The seismicity, which tracked the dike propagation, advanced in short bursts at 0.3–4.7 km/h separated by pauses of up to 81 h. During each surge forward, seismicity behind the dike tip dropped. Moment tensor solutions from the leading edge show exclusively left-lateral strike-slip faulting subparallel to the advancing dike tip, releasing accumulated strain deficit in the brittle layer of the rift zone. Behind the leading edge, both left- and right-lateral strike-slip earthquakes are observed. The lack of non-double-couple earthquakes implies that the dike opening was aseismic.Seismometers were borrowed from the Natural Environment Research Council (NERC) SEIS-UK (loans 968 and 1022),with funding by research grants from the NERC and the European Community’s Seventh Framework Programme grant 308377 (Project FUTUREVOLC), and graduate studentships from the NERC and Shell. We thank Ágúst Þór Gunnlaugsson and others who assisted with fieldwork in Iceland and Nigel Woodcock for his helpful discussions. M.T. Gudmundsson, H. Reynolds, and Þ. Högnadóttir supplied ice cauldron coordinates. The Icelandic Meteorological Office, Chris Bean (University College Dublin), and the British Geological Survey kindly provided additional data from seismometers in northeast Iceland, data delivery from IMO seismic database 20151001/01. We thank the two anonymous reviewers for their constructive comments. Hypocenter locations in Figure 1 are listed in Tables S2 and S3. (Department of Earth Sciences, Cambridge contribution ESC3539).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/2015GL06742

    Seismic Amplitude Ratio Analysis of the 2014-2015 Bárðarbunga-Holuhraun Dike Propagation and Eruption

    Get PDF
    Magma is transported in brittle rock through dikes and sills. This movement may be accompanied by the release of seismic energy that can be tracked from the Earth's surface. Locating dikes and deciphering their dynamics is therefore of prime importance in understanding and potentially forecasting volcanic eruptions. The Seismic Amplitude Ratio Analysis (SARA) method aims to track melt propagation using the amplitudes recorded across a seismic network without picking the arrival times of individual earthquake phases. This study validates this methodology by comparing SARA locations (filtered between 2 and 16 Hz) with the earthquake locations (same frequency band) recorded during the 2014–2015 Bár urn:x-wiley:jgrb:media:jgrb52508:jgrb52508-math-0003arbunga‐Holuhraun dike intrusion and eruption in Iceland. Integrating both approaches also provides the opportunity to investigate the spatiotemporal characteristics of magma migration during the dike intrusion and ensuing eruption. During the intrusion SARA locations correspond remarkably well to the locations of earthquakes. Several exceptions are, however, observed. (1) A low‐frequency signal was possibly associated with a subglacial eruption on 23 August. (2) A systematic retreat of the seismicity was also observed to the back of each active segment during stalled phases and was associated with a larger spatial extent of the seismic energy source. This behavior may be controlled by the dike's shape and/or by dike inflation. (3) During the eruption SARA locations consistently focused at the eruptive site. (4) Tremor‐rich signal close to ice cauldrons occurred on 3 September. This study demonstrates the power of the SARA methodology, provided robust site amplification; Quality Factors and seismic velocities are available.The authors thank both reviewers, the Associate Editor, and the Editor for their insightful comments and suggestions that greatly improved this study. Seismometers were borrowed from the Natural Environment Research Council (NERC) SEIS-UK facility (loans 968 and 1022), with funding by research grants from the NERC and the European Community’s Seventh Framework Programme grant 308377 (Project FUTUREVOLC), and graduate studentships from the NERC. C. Caudron benefited from a Fondation Wiener Anspach postdoctoral fellowship, then from a FNRS Chargé de Recherche postdoctoral grantPeer Reviewe

    Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting

    Get PDF
    Along mid-ocean ridges the extending crust is segmented1 on length scales of 10–1,000 km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries2 accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf3. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments

    Radio Astronomy

    Get PDF
    Contains research objectives and summary of research on seven research projects.M.I.T. Sloan Fund for Basic ResearchNational Aeronautics and Space Administration (Contract NAS5-21980)National Aeronautics and Space Administration (Contract NAS5-22485)National Aeronautics and Space Administration (Contract NAS5-23677)National Aeronautics and Space Administration (Contract NAS5-22929)U. S. Air Force - Electronic Systems Division (Contract F19628-75-C-0122)National Science Foundation (Grant AST73-05043-A02)National Science Foundation (Grant AST73-05042-A03
    corecore