21,969 research outputs found

    Classical {\it vs.}\ Landau-Ginzburg Geometry of Compactification

    Full text link
    We consider superstring compactifications where both the classical description, in terms of a Calabi-Yau manifold, and also the quantum theory is known in terms of a Landau-Ginzburg orbifold model. In particular, we study (smooth) Calabi-Yau examples in which there are obstructions to parametrizing all of the complex structure cohomology by polynomial deformations thus requiring the analysis based on exact and spectral sequences. General arguments ensure that the Landau-Ginzburg chiral ring copes with such a situation by having a nontrivial contribution from twisted sectors. Beyond the expected final agreement between the mathematical and physical approaches, we find a direct correspondence between the analysis of each, thus giving a more complete mathematical understanding of twisted sectors. Furthermore, this approach shows that physical reasoning based upon spectral flow arguments for determining the spectrum of Landau-Ginzburg orbifold models finds direct mathematical justification in Koszul complex calculations and also that careful point- field analysis continues to recover suprisingly much of the stringy features.Comment: 14

    Effects of annealing and strain on La_{1-x}Ca_{x}MnO_{3} thin films: a new phase diagram in the ferromagnetic region

    Full text link
    Oriented, single phase thin films of La_{1-x}Ca_{x}MnO_{3} have been deposited onto (100)-oriented LaAlO_{3} (0.1<x<0.5) substrates using the Pulsed Laser Deposition technique. While for some compositions the physical properties (transport and magnetization) of the as-grown films are higher than the bulk values, for other calcium contents the optimized properties are obtained only after annealing under oxygen. These data can be partly explained by changes in oxygen content, resulting in cationic vacancies and thus self-doping effects - accompanying structural changes, may be the cause of properties beyond the phase diagram. We propose a new phase diagram for (La_{1-x}Ca_{x})_{1-y}\square_{y}MnO_{3} (0.1<x<0.5) thin films.Comment: 8 pages, 5 figures submitted to Applied Physics Letter

    The effect of substrate induced strain on the charge-ordering transition in Nd_{0.5}Sr_{0.5}MnO_{3} thin films

    Full text link
    We report the synthesis and characterization of Nd_{0.5}Sr_{0.5}MnO_{3} thin films grown by the Pulsed Laser Deposition technique on 100 -oriented LaAlO_{3} substrates. X-ray diffraction (XRD) studies show that the films are 101 -oriented, with a strained and quasi-relaxed component, the latter increasing with film thickness. We observe that transport properties are strongly dependent on the thickness of the films. Variable temperature XRD down to 100 K suggests that this is caused by substrate induced strain on the films.Comment: 3 pages REVTeX, 4 figures included, submitted to AP

    Hall effect encoding of brushless dc motors

    Get PDF
    Encoding mechanism integral to the motor and using the permanent magnets embedded in the rotor eliminates the need for external devices to encode information relating the position and velocity of the rotating member

    Coexistence of Antiferromagnetism and Superconductivity in Electron-doped High-Tc Superconductors

    Full text link
    We present magnetotransport evidence for antiferromagnetism in films of the electron-doped cuprates Pr2−x_{2-x}Cex_xCuO4_4. Our results show clear signature of static antiferromagnetism up to optimal doping x=0.15, with a quantum phase transition close to x=0.16, and a coexistence of static antiferromagnetism and superconductivity for 0.12≤\lex≤\le0.15

    The Penguin: a Low Reynolds Number Powered Glider for Station Keeping Missions

    Get PDF
    The Penguin is a low Reynolds number (approx. 100,000) remotely piloted vehicle (RPV). It was designed to fly three laps indoors around two pylons in a figure-eight course while maximizing loiter time. The Penguin's low Reynolds number mission is an important one currently being studied for possible future flights in the atmospheres of other planets and for specialized military missions. Although the Penguin's mission seemed quite simple at first, the challenges of such low Reynolds number flight have proven to be quite unique. In addition to the constraint of low Reynolds number flight, the aircraft had to be robust in its control, highly durable, and it had to carry a small instrument package. The Penguin's flight plan, concept, performance, aerodynamic design, weight estimation, structural design, propulsion, stability and control, and cost estimate is detailed

    Local tunneling spectroscopy of the electron-doped cuprate Sm1.85Ce0.15CuO4

    Full text link
    We present local tunneling spectroscopy in the optimally electron-doped cuprate Sm2-xCexCuO4 x=0.15. A clear signature of the superconducting gap is observed with an amplitude ranging from place to place and from sample to sample (Delta~3.5-6meV). Another spectroscopic feature is simultaneously observed at high energy above \pm 50meV. Its energy scale and temperature evolution is found to be compatible with previous photoemission and optical experiments. If interpreted as the signature of antiferromagnetic order in the samples, these results could suggest the coexistence on the local scale of antiferromagnetism and superconductivity on the electron-doped side of cuprate superconductors
    • …
    corecore