21,397 research outputs found

    Performance evaluation of a class of systematic, rate (M-1)/M, convolutional codes

    Get PDF
    The implementation and performance evaluation are described for a class of rate (M-1)/M, systematic, convolutional codes being decoded with a simple majority logic decoder. The encoding logic appends one parity bit for each PCM telemetry word. It is shown that over the critical range of received PCM telemetry signal-to-noise ratios, this coding procedure produces a net coding gain of from 1.5 to 2.5 db relative to an equal power transmission of uncoded PCM telemetry. Being a low-redundancy systematic code, it is possible to process this data without convolutional decoding with a small rate loss penalty of about 0.5 db

    On the Appearance of Families of Efimov States in the Spinor Three-Body Problem

    Get PDF
    Few-body systems with access to multiple internal levels exhibit richness beyond that typically found in their single-level counterparts. One example is that of Efimov states in strongly-correlated spinor three-body systems. In [V. E. Colussi, C. H. Greene, and J. P. D'Incao, Phys. Rev. Lett. {\bf 113}, 045302 (2014)] this problem was analyzed for spinor condensates finding a complex level structure as in an early work [Bulgac and Efimov, Sov. J. Nucl. Phys. 22, 153 (1976)] in nuclear physics, and the impact of Efimov physics on the general form of the scattering observables was worked out. In this paper we discuss the appearance of novel families of Efimov states in the spinor three-body problem.Comment: Conference proceedings for the 21st International Conference on Few-Body Problems in Physic

    Development of advanced digital techniques for data acquisition processing and communication Interim scientific report

    Get PDF
    Digital techniques for automatic evaluation of images and data compression algorithm

    OAO date transmission study Final report, Feb. 10 - Jul. 25, 1967

    Get PDF
    Reduction of OAO spacecraft data handling equipment telemetry dat

    Raising the unification scale in supersymmetry

    Get PDF
    In the minimal supersymmetric standard model, the three gauge couplings appear to unify at a mass scale near 2×10162 \times 10^{16} GeV. We investigate the possibility that intermediate scale particle thresholds modify the running couplings so as to increase the unification scale. By requiring consistency of this scenario, we derive some constraints on the particle content and locations of the intermediate thresholds. There are remarkably few acceptable solutions with a single cleanly defined intermediate scale far below the unification scale.Comment: 22 pages, macros included. One figure, available at ftp://ftp.phys.ufl.edu/incoming/rais.ep

    ALMA Observations of a Candidate Molecular Outflow in an Obscured Quasar

    Full text link
    We present Atacama Large Millimeter/Submillimeter Array (ALMA) CO (1-0) and CO (3-2) observations of SDSS J135646.10+102609.0, an obscured quasar and ultra-luminous infrared galaxy (ULIRG) with two merging nuclei and a known 20-kpc-scale ionized outflow. The total molecular gas mass is M_{mol} ~ 9^{+19}_{-6} x 10^8 Msun, mostly distributed in a compact rotating disk at the primary nucleus (M_{mol} ~ 3 x 10^8 Msun) and an extended tidal arm (M_{mol} ~ 5 x 10^8 Msun). The tidal arm is one of the most massive molecular tidal features known; we suggest that it is due to the lower chance of shock dissociation in this elliptical/disk galaxy merger. In the spatially resolved CO (3-2) data, we find a compact (r ~ 0.3 kpc) high velocity (v ~ 500 km/s) red-shifted feature in addition to the rotation at the N nucleus. We propose a molecular outflow as the most likely explanation for the high velocity gas. The outflowing mass of M_{mol} ~ 7 x 10^7 Msun and the short dynamical time of t_{dyn} ~ 0.6 Myr yield a very high outflow rate of \dot{M}_{mol} ~ 350 Msun/yr and can deplete the gas in a million years. We find a low star formation rate (< 16 Msun/yr from the molecular content and < 21 Msun/yr from the far-infrared spectral energy distribution decomposition) that is inadequate to supply the kinetic luminosity of the outflow (\dot{E} ~ 3 x 10^43 erg/s). Therefore, the active galactic nucleus, with a bolometric luminosity of 10^46 erg/s, likely powers the outflow. The momentum boost rate of the outflow (\dot{p}/(Lbol/c) ~ 3) is lower than typical molecular outflows associated with AGN, which may be related to its compactness. The molecular and ionized outflows are likely two distinct bursts induced by episodic AGN activity that varies on a time scale of 10^7 yr.Comment: 16 pages, 7 figures, ApJ accepte

    Observations of Feedback from Radio-Quiet Quasars: I. Extents and Morphologies of Ionized Gas Nebulae

    Full text link
    Black hole feedback -- the strong interaction between the energy output of supermassive black holes and their surrounding environments -- is routinely invoked to explain the absence of overly luminous galaxies, the black hole vs. bulge correlations and the similarity of black hole accretion and star formation histories. Yet direct probes of this process in action are scarce and limited to small samples of active nuclei. We present Gemini IFU observations of the distribution of ionized gas around luminous, obscured, radio-quiet (RQ) quasars at z~0.5. We detect extended ionized gas nebulae via [O III]5007 emission in every case, with a mean diameter of 28 kpc. These nebulae are nearly perfectly round. The regular morphologies of nebulae around RQ quasars are in striking contrast with lumpy or elongated nebulae seen around radio galaxies at low and high redshifts. We present the uniformly measured size-luminosity relationship of [O III] nebulae around Seyfert 2 galaxies and type 2 quasars spanning 6 orders of magnitude in luminosity and confirm the flat slope of the correlation (R ~ L^{0.25+/-0.02}). We find a universal behavior of the [O III]/H-beta ratio in our entire RQ quasar sample: it persists at a constant value (~10) in the central regions, until reaching a "break" isophotal radius ranging from 4 to 11 kpc where it starts to decrease. We propose a model of clumpy nebulae in which clouds that produce line emission transition from being ionization-bounded at small distances from the quasar to being matter-bounded in the outer parts of the nebula, which qualitatively explains the observed line ratio and surface brightness profiles. It is striking that we see such smooth and round large-scale gas nebulosities in this sample, which are inconsistent with illuminated merger debris and which we suggest may be the signature of accretion energy from the nucleus reaching gas at large scales.Comment: 44 pages, 11 figures, 3 tables. Accepted for publication in MNRA
    corecore