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Abstract. Few-body systems with access to multiple internal levels exhibit richness be-

yond that typically found in their single-level counterparts. One example is that of Efimov

states in strongly-correlated spinor three-body systems. In [V. E. Colussi, C. H. Greene,

and J. P. D’Incao, Phys. Rev. Lett. 113, 045302 (2014)] this problem was analyzed for

spinor condensates finding a complex level structure as in an early work [Bulgac and Efi-

mov, Sov. J. Nucl. Phys. 22, 153 (1976)] in nuclear physics, and the impact of Efimov

physics on the general form of the scattering observables was worked out. In this paper

we discuss the appearance of novel families of Efimov states in the spinor three-body

problem.

1 Introduction

The spinor three-body problem has received renewed interest recently due to the flourish of activity in

the cold-atom community focused on the creation and manipulation of Bose-condensed gases of alkali

atoms with access to the full multiplet of hyperfine ground states (see Ref. [1] and citations within.)

These spinor condensates exhibit the rich interplay between superfluidity and magnetism, displaying

interesting static and nonequilibrium many-body phenomenon from spin textures and spin domains to

complex spin mixing dynamics [1]. This scenario also displays richness on the few-body level, where

recent work has focused on the strongly-correlated regime [2, 3]. In spinor condensate experiments

with alkali atoms to date, the interactions have typically been weak (with the exception of 85Rb [3, 4]

and possibly also 133Cs and 7Li), and so the strongly-correlated regime remains largely unexplored.

In the strongly correlated regime, the s-wave scattering lengths associated with each two-body spin

state exceeds the typical range of interatomic interactions, and Efimov physics becomes important [5–

7]. In the single-level case, this leads to the formation of Efimov states whose level spectrum has an

exponential structure and whose presence strongly affects the scattering observables, characterized by

the geometric scaling factor eπ/|s0 |, where s0 (≈ 1.00624i for identical bosons) is a universal constant
that relates to the strength of the three-body interaction. One of the major differences of the spinor

three-body problem is the presence of multiple length scales in the problem associated with the s-wave
scattering lengths for each of the two-body scattering channels. This not only modifies the energy

spectrum but also increases the number of pathways three-body collisional processes like three-body
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recombination, atom-dimer relaxation and three-body spin-exchange, can occur [2]. In addition to

that, the spin physics leads to the appearance of different values for the Efimov s0 parameter, leading

to the formation of novel families of Efimov states [2, 3].

In this paper we present a simple toy model which illuminates how these novel Efimov states

arise in spinor systems. We consider a model where each boson has access to two degenerate internal

states. By considering the full parameter space of scattering lengths and couplings between the two-

body scattering channels, the mechanism by which the novel Efimov states arise is characterized. Our

results echo the findings of Ref. [2, 3, 8], although the toy model presented here is the first to probe

the parameter space of scattering lengths and couplings in the case of degenerate internal levels.

2 Background

On the one-body level the two internal states are labeled |1〉 and |2〉. Pairs of atoms interact via a

multichannel generalization of the Fermi pseudopotential [9–11], which (in a.u.) has the form:

v̂(r) =
4πÂ
m
δ3(�r)

∂

∂r
r =

4π

m

⎛⎜⎜⎜⎜⎜⎝
∑
σσ′

|σ〉Aσσ′ 〈σ′|
⎞⎟⎟⎟⎟⎟⎠ δ3(�r) ∂∂r r, (1)

where δ3(�r) is the three-dimensional Dirac delta-function, m is the atomic mass, and Â is the scatter-

ing length matrix. The matrix Â is a multichannel generalization of the scattering length where the

diagonal elements represent the background scattering lengths in each channel and the off-diagonal

elements are the couplings. The two-body basis is constructed by requiring them to be eigenkets of

the symmetrization operator {|σ〉} = {|11〉, |12〉S , |22〉} [12].
We solve the three-body problem in the adiabatic hyperspherical representation, using the Green’s

function method developed in Refs. [9, 10]. The three-body system is characterized by the hyperradius

R which sets the overall size of the system and a set of five hyperangles collectively denoted Ω which

describe the internal motion. Treating R as an adiabatic parameter, the three-body wave-function can

be written as

Ψ(R,Ω) =
∑
ν

Fν(R)
∑
Σ

ΦΣν (R;Ω)|Σ〉, (2)

where F(R) are the hyperradial wave functions, Φ(R;Ω) the channel functions, and {|Σ〉} =
{|111〉, |112〉S , |211〉, |122〉, |221〉S , |222〉} the basis set labeling the internal levels for each three-body

configuration [12]. The task of solving the full three-body Schrödinger equation is reduced to solving

the fixed-R hyperangular equation

∑
Σ′

[
Λ̂2(Ω) + 15/4

2μR2
δΣΣ′ + 〈Σ′|V̂(R,Ω)|Σ〉

]
ΦΣν (R;Ω) = Uν(R)ΦΣν (R;Ω), (3)

where μ is the three-body reduced mass, Λ̂ is the grand angular momentum operator [13], and V̂ is the

sum of pairwise interactions. The three-body potential Uν(R) is obtained by solving Eq. 3 for fixed R
values, where the problem reduces to solving a transcendental equation whose roots sν(R) enter as

Uν(R) =
sν(R)2 − 1/4

2μR2
. (4)

In the single-level case for three identical bosons in the limit R/a → 0, solving Eq. 3 yields a single

imaginary root s0 ≈ 1.00624i, which when inserted in Eq. 4 gives an attractive 1/R2 potential which

supports an infinite amount of bound trimers (Efimov states) characteristic of the Efimov effect. For
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two identical and one dissimilar bosons s0 ≈ 0.41370i. In Ref. [2, 3], the first few sν(R) for spin-1, 2,
and 3 are tabulated over all relevant length scales. The results demonstrate novel imaginary roots that

lie in between the results from the analysis of single-level three-body systems as described in Ref. [8].

In the next section we illustrate with a simple toy model how to understand the appearance of these

novel roots.

3 Toy Model

We will discuss first a toy model which explores the parameter space of the matrix Â. The toy model

will then be generalized and a connection with the spinor three-body problem and the appearance of

novel Efimov roots made. In our two-level toy model Â is a real-valued symmetric 3 × 3 matrix with

eigenvalues aα, aβ, and aγ. The full parameter space of Â is large, but by considering a simple case

the structure becomes more apparent. Consider the scenario where A1,3 = A2,3 = 0 with eigenvalues

aα/β =
(

A1,1 + A2,2

2

)
±

⎡⎢⎢⎢⎢⎢⎣A2
1,2 +

(
A1,1 − A2,2

2

)2⎤⎥⎥⎥⎥⎥⎦
1/2

and aγ = A3,3 (5)

and eigenvectors

|σα〉 = cos θ|11〉 + sin θ|12〉S , |σβ〉 = sin θ|11〉 − cos θ|12〉S , and |σγ〉 = |22〉 (6)

parameterized by the lone parameter

tan θ =
2A1,2[(

A1,1 − A2,2
)
+

[
4A2

1,2 +
(
A1,1 − A2,2

)2]1/2] . (7)

By construction, variation of the angle θ ∈ [0, π/2] ensures that the scattering lengths aα, aβ, and aγ
remain constant while the eigenvectors |σα〉 and |σβ〉 describe admixtures of the basis states |11〉 and
|12〉S .

In Figure 1, the results from solving Eq. 3 for the first few roots sν(R) in the hyperradial region

aα � R � aβ are shown. When θ = 0, there are two imaginary roots s0 = s1 ≈ 0.41370i, asso-
ciated with the three-body configurations |221〉, |122〉, and all other configurations obtained by label

permutation. When θ = π/2, there is only one imaginary root s0 ≈ 1.00624i associated with the

three-body configuration |111〉. For intermediate values of θ the values sν are not assigned to any of

the single-level results. In fact, the s0 and s1 are associated with a three-body configuration which is

a linear combination of the configurations of the extreme θ = 0 and π/2 cases and producing novel

families of Efimov states.

The toy model is a result of a unitary transformation, Â → Û†ÂÛ. Equivalently, it is a result

of a transformation (rotation) of the basis {|11〉, |12〉S , |22〉} → {|σα〉, |σβ〉, |22〉}. What is then the

class of unitary transformations which produce novel families of Efimov states? The eigenvector of Â
attached to the resonant channel must mix two-body product states under the transformation, which

cannot arise from a unitary transformation on the one-body level.

There is a simple connection between these results and those from Ref. [2, 3] for spin-1, 2, and 3.

When the internal levels are composed of the hyperfine spin multiplet there is the additional require-

ment that the two-body eigenstates be simultaneous eigenstates of both the symmetrization operator

and spin operator F̂2. The unitary matrix that diagonalizes the matrix F̂2 carries the product basis

|mf1〉 ⊗ |mf2〉 into the |F2B,mF2b〉 basis, and the elements of this matrix are Clebsch-Gordan coeffi-

cients, which is also equivalent to a unitary transformation of the matrix Â. In the toy model, the
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Figure 1. The first few roots sν obtained from
solving Eq. 3 for the toy model in the

hyperradial region aα � R � aβ. The roots
are plotted versus the angle θ which controls

the amount of admixture in the system.

admixture was set by the angle θ and treated as tunable for exploring the full parameter space. In

the spinor case, this admixture is set by the values of the Clebsch-Gordan coefficients. As in the toy

model, this admixture produces roots sν which are associated with three-body spin configurations that
can be composed of a linear combination of product state spin functions and are capable of producing

novel families of Efimov states.
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