427 research outputs found

    The Nuclear Physics of Hyperfine Structure in Hydrogenic Atoms

    Full text link
    The theory of QED corrections to hyperfine structure in light hydrogenic atoms and ions has recently advanced to the point that the uncertainty of these corrections is much smaller than 1 part per million (ppm), while the experiments are even more accurate. The difference of the experimental results and the corresponding QED theory is due to nuclear effects, which are primarily the result of the finite nuclear charge and magnetization distributions. This difference varies from tens to hundreds of ppm. We have calculated the dominant nuclear component of the 1s hyperfine interval for deuterium, tritium and singly ionized helium, using a unified approach with modern second-generation potentials. The calculated nuclear corrections are within 3% of the experimental values for deuterium and tritium, but are roughly 20% discrepant for helium. The nuclear corrections for the trinucleon systems can be qualitatively understood by invoking SU(4) symmetry.Comment: 12 pages, 1 figure, latex - submitted to Physics Letters

    A Finite-Volume Version of Aizenman-Higuchi Theorem for the 2d Ising Model

    Full text link
    In the late 1970s, in two celebrated papers, Aizenman and Higuchi independently established that all infinite-volume Gibbs measures of the two-dimensional ferromagnetic nearest-neighbor Ising model are convex combinations of the two pure phases. We present here a new approach to this result, with a number of advantages: (i) We obtain an optimal finite-volume, quantitative analogue (implying the classical claim); (ii) the scheme of our proof seems more natural and provides a better picture of the underlying phenomenon; (iii) this new approach might be applicable to systems for which the classical method fails.Comment: A couple of typos corrected. To appear in Probab. Theory Relat. Field

    The reciprocal relation between children’s attachment representations and their cognitive ability

    Full text link
    This study explores reciprocal relations between children’s attachment representations and their cognitive ability. Previous literature has mainly focused on the prediction of cognitive abilities from attachment, rarely on the reverse prediction. This was explored in the current research. Attachment representations were assessed with the Attachment Story Completion Task (Bretherton, Ridgeway, & Cassidy, 1990); the IQ was measured with the WPPSI-III (Wechsler, 2004). Data were collected twice, at a two-year interval, from about 400 preschoolers. Reasoning IQ was found to influence the development of secure attachment representations, while attachment security and disorganization influenced later verbal IQ. The implications of the findings for both clinical and research purposes are discussed in the light of the interactions between cognitive abilities and attachment representations

    1/Nc1/N_c Expansion for Excited Baryons

    Get PDF
    We derive consistency conditions which constrain the possible form of the strong couplings of the excited baryons to the pions. The consistency conditions follow from requiring the pion-excited baryon scattering amplitudes to satisfy the large-N_c Witten counting rules and are analogous to consistency conditions used by Dashen, Jenkins and Manohar and others for s-wave baryons. The consistency conditions are explicitly solved, giving the most general allowed form of the strong vertices for excited baryons in the large-N_c limit. We show that the solutions to the large-N_c consistency conditions coincide with the predictions of the nonrelativistic quark model for these states, extending the results previously obtained for the s-wave baryons. The 1/N_c corrections to these predictions are studied in the quark model with arbitrary number of colors N_c.Comment: 56 pages, REVTeX; one new Appendix added containing a discussion of the results in the language of quark operator

    Negative Parity 70-plet Baryon Masses in the 1/Nc Expansion

    Get PDF
    The masses of the negative parity SU(6) 70-plet baryons are analyzed in the 1/Nc expansion to order 1/Nc and to first order in SU(3) breaking. At this level of precision there are twenty predictions. Among them there are the well known Gell-Mann Okubo and equal spacing relations, and four new relations involving SU(3) breaking splittings in different SU(3) multiplets. Although the breaking of SU(6) symmetry occurs at zeroth order in 1/Nc, it turns out to be small. The dominant source of the breaking is the hyperfine interaction which is of order 1/Nc. The spin-orbit interaction, of zeroth order in 1/Nc, is entirely fixed by the splitting between the singlet states Lambda(1405) and Lambda(1520), and the spin-orbit puzzle is solved by the presence of other zeroth order operators involving flavor exchange.Comment: 31 pages, 3 figure

    Probing Lorentz and CPT violation with space-based experiments

    Get PDF
    Space-based experiments offer sensitivity to numerous unmeasured effects involving Lorentz and CPT violation. We provide a classification of clock sensitivities and present explicit expressions for time variations arising in such experiments from nonzero coefficients in the Lorentz- and CPT-violating Standard-Model Extension.Comment: 15 page

    Lorentz and CPT Violation in Neutrinos

    Get PDF
    A general formalism is presented for violations of Lorentz and CPT symmetry in the neutrino sector. The effective hamiltonian for neutrino propagation in the presence of Lorentz and CPT violation is derived, and its properties are studied. Possible definitive signals in existing and future neutrino-oscillation experiments are discussed. Among the predictions are direction-dependent effects, including neutrino-antineutrino mixing, sidereal and annual variations, and compass asymmetries. Other consequences of Lorentz and CPT violation involve unconventional energy dependences in oscillation lengths and mixing angles. A variety of simple models both with and without neutrino masses are developed to illustrate key physical effects. The attainable sensitivities to coefficients for Lorentz violation in the Standard-Model Extension are estimated for various types of experiments. Many experiments have potential sensitivity to Planck-suppressed effects, comparable to the best tests in other sectors. The lack of existing experimental constraints, the wide range of available coefficient space, and the variety of novel effects imply that some or perhaps even all of the existing data on neutrino oscillations might be due to Lorentz and CPT violation.Comment: 25 pages REVTe

    Operator Analysis of L=1 Baryon Masses in Large N_c QCD

    Get PDF
    We consider in detail the mass operator analysis for the nonstrange L=1 excited baryons in large N_c QCD. We present a straightforward procedure for constructing the large N_c baryon wavefunctions, and provide complete analytic expressions for the matrix elements of all the independent isosinglet mass operators. We discuss the relationship between the old-fashioned operator analyses based on nonrelativistic SU(6) symmetry and the modern large N_c approach, which has a firmer theoretical foundation. We then suggest a possible dynamical interpretation for the subset of operators preferred strongly by the data.Comment: 36 pages LaTe

    A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876

    Full text link
    Investigations of two resonant planets orbiting a star or two resonant satellites orbiting a planet often rely on a few resonant and secular terms in order to obtain a representative quantitative description of the system's dynamical evolution. We present a semianalytic model which traces the orbital evolution of any two resonant bodies in a first- through fourth-order eccentricity or inclination-based resonance dominated by the resonant and secular arguments of the user's choosing. By considering the variation of libration width with different orbital parameters, we identify regions of phase space which give rise to different resonant ''depths,'' and propose methods to model libration profiles. We apply the model to the GJ 876 extrasolar planetary system, quantify the relative importance of the relevant resonant and secular contributions, and thereby assess the goodness of the common approximation of representing the system by just the presumably dominant terms. We highlight the danger in using ''order'' as the metric for accuracy in the orbital solution by revealing the unnatural libration centers produced by the second-order, but not first-order, solution, and by demonstrating that the true orbital solution lies somewhere ''in-between'' the third- and fourth-order solutions. We also present formulas used to incorporate perturbations from central-body oblateness and precession, and a protoplanetary or protosatellite thin disk with gaps, into a resonant system. We quantify these contributions to the GJ 876 system, and thereby highlight the conditions which must exist for multi-planet exosystems to be significantly influenced by such factors. We find that massive enough disks may convert resonant libration into circulation; such disk-induced signatures may provide constraints for future studies of exoplanet systems.Comment: 39 pages of body text, 21 figures, 5 tables, 1 appendix, accepted for publication in Celestial Mechanics and Dynamical Astronom
    corecore