202 research outputs found

    Shifting sands

    Get PDF
    The article presents the proposed changes to the New Zealand Draft Curriculum on the Nature of Science. In July 2006, the draft was released to school and the wider educational community for consultation on the national curriculum policy. It asserts to help science teachers to develop their understanding on nature of scientific knowledge and on how the community can effectively teach such aspects of the curriculum in the classroom setting

    Effects of deposit-feeding bivalve (Macomona liliana) density on intertidal sediment stability

    Get PDF
    Effects of macrofaunal feeding and bioturbation on intertidal sediment stability (u*crit) were investigated by manipulating density (0-3 x ambient) of the facultative deposit-feeding wedge shell (Macomona liliana) on the Tuapiro sandflat in Tauranga Harbour, New Zealand. Sediment stability increased up to 200% with decreasing M. liliana density and this was correlated with greater sediment microalgal biomass and mucilage content. The change in stability occurred despite homogeneity of grain size amongst experimental treatments, highlighting the importance of macrofaunal-microbial relationships in determining estuarine sediment erodibility

    Response Characteristics of a Short Range, High resolution, Digital Sonar Altimeter

    Get PDF
    The Datasonics Model ASA-920 digital sonar altimeter (DSA) is a compact, high frequency (1 MHz), short range (0.5 to 5 m) underwater sonar device originally designed as an altimeter for submersib1es. Wright et al. (1986) have used the DSA successfully to measure changes in relative bed elevation at a point on the shoreface prior to and during a storm. Fixed to a rigid mounting on the seabed, the DSA produces a digital output that is proportional to the transducer elevation above the bed. The purpose of this report is to describe the response characteristics of the DSA

    Low-energy bedload transport by combined wave and current flow on a southern mid-Atlantic bight shoreface

    Get PDF
    The control of the mean flow, wind-wave energy and wind-wave asymmetry on low-energy bedload transport magnitude, direction and divergence on a wave-dominated shoreface was investigated. The objective was to develop a mechanistic basis for postulated fairweather replenishment of the beach sediment prism by sediments derived from offshore. Fairweather currents were measured at 17.5-m and 22-m depth. Periods of competent flow were identified using a combined-flow boundary-layer model. Madsen and Grant\u27s (1976) combined-flow bedload-transport model was used to calculate sediment fluxes after modification of the expression for instantaneous transport rate to include a threshold criterion; this was necessary since sediment is not in motion over the whole wave period in low-energy conditions. The asymmetry thus introduced into the instantaneous transport rate resulted in partial control over transport direction by the wave. When the flow was competent, oscillatory motion contributed &\u3e&80% of the total skin friction. Net transport direction was controlled by: relative orientation of the wave and mean flow; orbital velocity asymmetry; and the threshold criterion. Threshold-induced rotation of the net transport vector was significant on the lower shoreface where the flow was not intense and the wave-orbital velocity not greatly skewed. Bedload-flux divergence associated with each observed event was simulated using a one-dimensional numerical model. Two scenarios were identified: (1) offshore transport seaward of 10-m depth under the dominant influence of the mean flow, and onshore transport at the top of the shoreface under the dominant influence of shoreward-skewed wave-orbital velocities, and (2) onshore transport at every point on the profile. Direct observations of currents and upper-shoreface accretion in 8-m depth (a total of 6 cm in 4.5 days) were consistent with the model simulations, with the mean flow controlling net transport direction. Observations and model calculations were consistent with the concept of fairweather nourishment of the beach sediment prism by sediment transported from offshore, however the mean flow may play a more important role than previously recognized

    Seabed drag coefficient over natural beds of horse mussels (Atrina zelandica)

    Get PDF
    Measurements of seabed drag coefficient, C100, were made under tidal currents at four sites in Mahurangi Harbour, New Zealand. At the first three sites the dominant roughness element was the pinnid bivalve, Atrina zelandica (horse mussel). At the fourth site, which was devoid of horse mussels but covered in cockle shells, patches of seaweed and crab burrows, C100 was smallest (0.0055), but still twice as large as the value typically applied to abiotic, flat, cohesionless seabeds (0.0025). The mean drag coefficient plus-or-minus standard error at the three sites with horse mussels was: 0.0082 ± 0.0010 (site 1); 0.0096 ± 0.0009 (site 2); 0.0115 ± 0.0016 (site 3). There were no clear differences amongst sites 1, 2 and 3 in terms of the attributes of individual horse mussels (e.g. shell height, width or orientation), which could have been used to explain the ranking of the drag coefficients. There were, however, differences amongst the three sites in terms of spatial distribution of individual bivalves. The site with the highest density of horse mussels, site 1, had the lowest drag coefficient and an areal concentration (λ) of horse mussels higher than typical values cited for the critical concentration (λc) for the onset of skimming flow over various idealized, three-dimensional roughness elements. At sites 2 and 3, the drag coefficient was given by: C100=[κ/1n (300/mkλ)]2 which was valid for λ \u3c λ c, where κ is von Karman\u27s constant, k is the horse mussel height (i.e., protrusion above the seabed), m ≈ 100 and λc ≈ 0.2. The stable eddies that are hypothesized to lodge between roughness elements at concentrations greater than λc may influence benthic community dynamics

    Structure of the internal boundary layer over a patch of pinnid bivalves (Atrina zelandica) in an estuary

    Get PDF
    Measurements of tidal-current boundary-layer flow over an experimental 2-m by 2-m patch of pinnid bivalves (Atrina zelandica) in a northern New Zealand estuary are presented. Previous work demonstrated a link between mesoscale (order 100 m) patchiness of the benthic biota and time-averaged boundary-layer dynamics. The aim in this new experiment was to describe the three-dimensional structure of turbulence at the patch scale (order 1 m). Flow over three densities of Atrina was investigated: 340 individuals per 4 m2, 50 individuals per 4 m2 and zero individuals. An internal boundary layer (IBL) grows downstream from the leading edge of the patch at the base of the ambient boundary layer. One meter in from the leading edge, the top of the IBL was ~ 12 cm above the bed for the high-density patch and ~ 6 cm for the low-density patch. Flow in the IBL was three-dimensional in that vertical and transverse mean velocities were nonzero, secondary Reynolds stresses were nonzero and comparable with the primary stress, and velocity spectra deviated from scaling relationships for two-dimensional flow. Thus, the observed IBL was still in its infancy, i.e., it consisted of a roughness sublayer only as the distance from the leading edge of the patch was not enough for development of a second, overlying logarithmic layer. In summary, the IBL that envelops the Atrina patch is a region of lower mean longitudinal velocities but more energetic turbulence relative to the ambient boundary layer. The former translates into shelter, which some organisms might take advantage of, and the latter translates into increased vertical exchange across the top of the IBL, which might enhance fluxes of nutrients, colonists and suspended sediments, and might have implications for deposition and resuspension of organically rich biodeposits. The results extend our knowledge of turbulence over patches of suspension feeders at the 1-m scale and therefore provide information needed to improve depiction of flow in models of suspension-feeder-flow interactions

    The Impact of Socio-Demographic and Religious Factors upon Sexual Behavior among Ugandan University Students

    Get PDF
    INTRODUCTION: More knowledge is needed about structural factors in society that affect risky sexual behaviors. Educational institutions such as universities provide an opportune arena for interventions among young people. The aim of this study was to investigate the relationship between sociodemographic and religious factors and their impact on sexual behavior among university students in Uganda. METHODS: In 2005, 980 university students (response rate 80%) were assessed by a self-administered questionnaire. Validated instruments were used to assess socio-demographic and religious factors and sexual behavior. Logistic regression analyses were applied. RESULTS: Our findings indicated that 37% of the male and 49% of the female students had not previously had sex. Of those with sexual experience, 46% of the males and 23% of the females had had three or more sexual partners, and 32% of the males and 38% of the females did not consistently use condoms. For those who rated religion as less important in their family, the probability of early sexual activity and having had a high number of lifetime partners increased by a statistically significant amount (OR = 1.7; 95% CI: 1.2-2.4 and OR = 1.6; 95% CI: 1.1-2.3, respectively). However, the role of religion seemed to have no impact on condom use. Being of Protestant faith interacted with gender: among those who had debuted sexually, Protestant female students were more likely to have had three or more lifetime partners; the opposite was true for Protestant male students. CONCLUSION: Religion emerged as an important determinant of sexual behavior among Ugandan university students. Our findings correlate with the increasing number of conservative religious injunctions against premarital sex directed at young people in many countries with a high burden. of HIV/AIDS. Such influence of religion must be taken into account in order to gain a deeper understanding of the forces that shape sexual behavior in Uganda

    [Comment] Redefine statistical significance

    Get PDF
    The lack of reproducibility of scientific studies has caused growing concern over the credibility of claims of new discoveries based on “statistically significant” findings. There has been much progress toward documenting and addressing several causes of this lack of reproducibility (e.g., multiple testing, P-hacking, publication bias, and under-powered studies). However, we believe that a leading cause of non-reproducibility has not yet been adequately addressed: Statistical standards of evidence for claiming discoveries in many fields of science are simply too low. Associating “statistically significant” findings with P < 0.05 results in a high rate of false positives even in the absence of other experimental, procedural and reporting problems. For fields where the threshold for defining statistical significance is P<0.05, we propose a change to P<0.005. This simple step would immediately improve the reproducibility of scientific research in many fields. Results that would currently be called “significant” but do not meet the new threshold should instead be called “suggestive.” While statisticians have known the relative weakness of using P≈0.05 as a threshold for discovery and the proposal to lower it to 0.005 is not new (1, 2), a critical mass of researchers now endorse this change. We restrict our recommendation to claims of discovery of new effects. We do not address the appropriate threshold for confirmatory or contradictory replications of existing claims. We also do not advocate changes to discovery thresholds in fields that have already adopted more stringent standards (e.g., genomics and high-energy physics research; see Potential Objections below). We also restrict our recommendation to studies that conduct null hypothesis significance tests. We have diverse views about how best to improve reproducibility, and many of us believe that other ways of summarizing the data, such as Bayes factors or other posterior summaries based on clearly articulated model assumptions, are preferable to P-values. However, changing the P-value threshold is simple and might quickly achieve broad acceptance

    Patterns and Perceptions of Climate Change in a Biodiversity Conservation Hotspot

    Get PDF
    Quantifying local people's perceptions to climate change, and their assessments of which changes matter, is fundamental to addressing the dual challenge of land conservation and poverty alleviation in densely populated tropical regions To develop appropriate policies and responses, it will be important not only to anticipate the nature of expected changes, but also how they are perceived, interpreted and adapted to by local residents. The Albertine Rift region in East Africa is one of the world's most threatened biodiversity hotspots due to dense smallholder agriculture, high levels of land and resource pressures, and habitat loss and conversion. Results of three separate household surveys conducted in the vicinity of Kibale National Park during the late 2000s indicate that farmers are concerned with variable precipitation. Many survey respondents reported that conditions are drier and rainfall timing is becoming less predictable. Analysis of daily rainfall data for the climate normal period 1981 to 2010 indicates that total rainfall both within and across seasons has not changed significantly, although the timing and transitions of seasons has been highly variable. Results of rainfall data analysis also indicate significant changes in the intra-seasonal rainfall distribution, including longer dry periods within rainy seasons, which may contribute to the perceived decrease in rainfall and can compromise food security. Our results highlight the need for fine-scale climate information to assist agro-ecological communities in developing effective adaptive management

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    corecore