6,536 research outputs found

    Effect of resonance decays on hadron elliptic flows

    Get PDF
    The influence of resonance decays on the elliptic flows of stable hadrons is studied in the quark coalescence model. Although difference between the elliptic flow of pions from resonance decays, except the rho meson, and that of directly produced pions is appreciable, those for other stable hadrons are small. Since there are more pions from the decays of rho mesons than from other resonances, including resonance decays can only account partially the deviation of final pion elliptic flow from the observed scaling of hadron elliptic flows, i.e., the hadron elliptic flow per quark is the same at same transverse momentum per quark. The remaining deviation can be explained by including the effect due to the quark momentum distribution inside hadrons.Comment: 13 pages and 5 figures, version pubblished in PRC, updated references and figure

    Large-N expansion based on the Hubbard operator path integral representation and its application to the t-J model II. The case for finite JJ

    Full text link
    We have introduced a new perturbative approach for t−J−Vt-J-V model where Hubbard operators are treated as fundamental objects. Using our vertices and propagators we have developed a controllable large-N expansion to calculate different correlation functions. We have investigated charge density-density response and the phase diagram of the model. The charge correlations functions are not very sensitive to the value of JJ and they show collective peaks (or zero sound) which are more pronounced when they are well separated (in energy) from the particle-hole continuum. For a given JJ a Fermi liquid state is found to be stable for doping δ\delta larger than a critical doping δc\delta_c. δc\delta_c decreases with decreasing JJ. For the physical region of the parameters and, for δ<δc\delta< \delta_c, the system enters in an incommensurate flux or DDW phase. The inclusion of the nearest-neighbors Coulomb repulsion VV leads to a CDW phase when VV is larger than a critical value VcV_c. The dependence of VcV_c with δ\delta and JJ is shown. We have compared the results with other ones in the literature.Comment: 10 pages, 8 figures, to appear in Phys. Rev.

    Test-particle acceleration in a hierarchical three-dimensional turbulence model

    Get PDF
    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares, nevertheless acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multi-scale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 10\,km (1/1001/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length and energy scales.Comment: 12 pages, 8 figures, ApJ (in press

    Electroweak 2 -> 2 amplitudes for electron-positron annihilation at TeV energies

    Get PDF
    The non-radiative scattering amplitudes for electron-positron annihilation into quark and lepton pairs in the TeV energy range are calculated in the double-logarithmic approximation. The expressions for the amplitudes are obtained using infrared evolution equations with different cut-offs for virtual photons and for W and Z bosons, and compared with previous results obtained with an universal cut-off.Comment: Revtex4, 17 pages, 7 figures. Some minor changes made, more refs adde

    One-electron self energies and spectral functions for the t-J model in the large-N limit

    Full text link
    Using a recently developed perturbative approach, which considers Hubbard operators as fundamental excitations, we have performed electronic self-energy and spectral function calculations for the t−Jt-J model on the square lattice. We have found that the spectral functions along the Fermi surface are isotropic, even close to the critical doping where the dd-density wave phase takes place. Fermi liquid behavior with scattering rate ∼ω2\sim \omega^2 and a finite quasiparticle weight ZZ was obtained. ZZ decreases with decreasing doping taking low values for low doping. Results are compared with other ones, analytical and numerical like slave-boson and Lanczos diagonalization finding agreement. We discuss our results in the light of recent ARPESARPES experiments in cuprates.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev.

    Application of density dependent parametrization models to asymmetric nuclear matter

    Full text link
    Density dependent parametrization models of the nucleon-meson effective couplings, including the isovector scalar \delta-field, are applied to asymmetric nuclear matter. The nuclear equation of state and the neutron star properties are studied in an effective Lagrangian density approach, using the relativistic mean field hadron theory. It is known that the introduction of a \delta-meson in the constant coupling scheme leads to an increase of the symmetry energy at high density and so to larger neutron star masses, in a pure nucleon-lepton scheme. We use here a more microscopic density dependent model of the nucleon-meson couplings to study the properties of neutron star matter and to re-examine the \delta-field effects in asymmetric nuclear matter. Our calculations show that, due to the increase of the effective \delta coupling at high density, with density dependent couplings the neutron star masses in fact can be even reduced.Comment: 5 pages, 4 figure

    Effect of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei

    Get PDF
    Using an isospin-dependent transport model, we study the effects of nuclear symmetry energy on two-nucleon correlation functions in heavy ion collisions induced by neutron-rich nuclei. We find that the density dependence of the nuclear symmetry energy affects significantly the nucleon emission times in these collisions, leading to larger values of two-nucleon correlation functions for a symmetry energy that has a stronger density dependence. Two-nucleon correlation functions are thus useful tools for extracting information about the nuclear symmetry energy from heavy ion collisions.Comment: Revised version, to appear in Phys. Rev. Let

    Magnetic Reconnection and Intermittent Turbulence in the Solar Wind

    Get PDF
    A statistical relationship between magnetic reconnection, current sheets and intermittent turbulence in the solar wind is reported for the first time using in-situ measurements from the Wind spacecraft at 1 AU. We identify intermittency as non-Gaussian fluctuations in increments of the magnetic field vector, B\mathbf{B}, that are spatially and temporally non-uniform. The reconnection events and current sheets are found to be concentrated in intervals of intermittent turbulence, identified using the partial variance of increments method: within the most non-Gaussian 1% of fluctuations in B\mathbf{B}, we find 87%-92% of reconnection exhausts and ∼\sim9% of current sheets. Also, the likelihood that an identified current sheet will also correspond to a reconnection exhaust increases dramatically as the least intermittent fluctuations are removed from the dataset. Hence, the turbulent solar wind contains a hierarchy of intermittent magnetic field structures that are increasingly linked to current sheets, which in turn are progressively more likely to correspond to sites of magnetic reconnection. These results could have far reaching implications for laboratory and astrophysical plasmas where turbulence and magnetic reconnection are ubiquitous.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    Genome-wide signatures of population bottlenecks and diversifying selection in European wolves

    Get PDF
    Genomic resources developed for domesticated species provide powerful tools for studying the evolutionary history of their wild relatives. Here we use 61K single-nucleotide polymorphisms (SNPs) evenly spaced throughout the canine nuclear genome to analyse evolutionary relationships among the three largest European populations of grey wolves in comparison with other populations worldwide, and investigate genome-wide effects of demographic bottlenecks and signatures of selection. European wolves have a discontinuous range, with large and connected populations in Eastern Europe and relatively smaller, isolated populations in Italy and the Iberian Peninsula. Our results suggest a continuous decline in wolf numbers in Europe since the Late Pleistocene, and long-term isolation and bottlenecks in the Italian and Iberian populations following their divergence from the Eastern European population. The Italian and Iberian populations have low genetic variability and high linkage disequilibrium, but relatively few autozygous segments across the genome. This last characteristic clearly distinguishes them from populations that underwent recent drastic demographic declines or founder events, and implies long-term bottlenecks in these two populations. Although genetic drift due to spatial isolation and bottlenecks seems to be a major evolutionary force diversifying the European populations, we detected 35 loci that are putatively under diversifying selection. Two of these loci flank the canine platelet-derived growth factor gene, which affects bone growth and may influence differences in body size between wolf populations. This study demonstrates the power of population genomics for identifying genetic signals of demographic bottlenecks and detecting signatures of directional selection in bottlenecked populations, despite their low background variability.Heredity advance online publication, 18 December 2013; doi:10.1038/hdy.2013.122
    • …
    corecore