326 research outputs found

    Reductive dechlorination of PCDD/F by anaerobic cultures and sediments

    Full text link
    The fate of highly chlorinated (5 to 7 chlorines per molecule) dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners was studied in anaerobic microcosms, using polychlorinated biphenyl (PCB)-contaminated Hudson River sediments, and creosote-contaminated aquifer sediments. The PCDD/PCDF concentrations in active microcosms were shown to decrease at higher rates than in chemical and biological controls. The net loss of PCDD/F from active microcosms was up to 35% higher than in autoclaved controls after extended incubation periods. Lesser chlorinated PCDD/F, identified to be peri-dechlorinated, have been found as the accumulating products resulting from reductive dechlorination under anaerobic methanogenic conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31241/1/0000147.pd

    Temperature range of superconducting fluctuations above T_c in YBa_2Cu_3O_{7-\delta} single crystals

    Get PDF
    Microwave absorption measurements in magnetic fields from zero up to 16 T were used to determine the temperature range of superconducting fluctuations above the superconducting critical temperature T_c in YBa_2Cu_3O_{7-\delta}. Measurements were performed on deeply underdoped, slightly underdoped, and overdoped single crystals. The temperature range of the superconducting fluctuations above T_c is determined by an experimental method which is free from arbitrary assumptions about subtracting the nonsuperconducting contributions to the total measured signal, and/or theoretical models to extract the unknown parameters. The superconducting fluctuations are detected in the ab-plane, and c-axis conductivity, by identifying the onset temperature T'. Within the sensitivity of the method, this fluctuation regime is found only within a fairly narrow region above T_c. Its width increases from 7 K in the overdoped sample (T_c = 89 K), to at most 23 K in the deeply underdoped sample (T_c = 57 K), so that T' falls well below the pseudogap temperature T*. Implications of these findings are discussed in the context of other experimental probes of superconducting fluctuations in the cuprates

    Electrical control over single hole spins in nanowire quantum dots

    Get PDF
    Single electron spins in semiconductor quantum dots (QDs) are a versatile platform for quantum information processing, however controlling decoherence remains a considerable challenge. Recently, hole spins have emerged as a promising alternative. Holes in III-V semiconductors have unique properties, such as strong spin-orbit interaction and weak coupling to nuclear spins, and therefore have potential for enhanced spin control and longer coherence times. Weaker hyperfine interaction has already been reported in self-assembled quantum dots using quantum optics techniques. However, challenging fabrication has so far kept the promise of hole-spin-based electronic devices out of reach in conventional III-V heterostructures. Here, we report gate-tuneable hole quantum dots formed in InSb nanowires. Using these devices we demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tuneable between hole and electron QDs, enabling direct comparison between the hyperfine interaction strengths, g-factors and spin blockade anisotropies in the two regimes

    Reconfigurable quantum metamaterials

    Get PDF
    By coupling controllable quantum systems into larger structures we introduce the concept of a quantum metamaterial. Conventional meta-materials represent one of the most important frontiers in optical design, with applications in diverse fields ranging from medicine to aerospace. Up until now however, metamaterials have themselves been classical structures and interact only with the classical properties of light. Here we describe a class of dynamic metamaterials, based on the quantum properties of coupled atom-cavity arrays, which are intrinsically lossless, reconfigurable, and operate fundamentally at the quantum level. We show how this new class of metamaterial could be used to create a reconfigurable quantum superlens possessing a negative index gradient for single photon imaging. With the inherent features of quantum superposition and entanglement of metamaterial properties, this new class of dynamic quantum metamaterial, opens a new vista for quantum science and technology.Comment: 16 pages, 8 figure

    Placenta-Like Structure of the Aphid Endoparasitic Wasp Aphidius ervi: A Strategy of Optimal Resources Acquisition

    Get PDF
    Aphidius ervi (Hymenoptera: Braconidae) is an entomophagous parasitoid known to be an effective parasitoid of several aphid species of economic importance. A reduction of its production cost during mass rearing for inundative release is needed to improve its use in biological control of pests. In these contexts, a careful analysis of its entire development phases within its host is needed. This paper shows that this parasitoid has some characteristics in its embryological development rather complex and different from most other reported insects, which can be phylogenetically very close. First, its yolkless egg allows a high fecundity of the female but force them to hatch from the egg shell rapidly to the host hemocoel. An early cellularisation allowing a rapid differentiation of a serosa membrane seems to confirm this hypothesis. The serosa wraps the developing embryo until the first instar larva stage and invades the host tissues by microvilli projections and form a placenta like structure able to divert host resources and allowing nutrition and respiration of embryo. Such interspecific invasion, at the cellular level, recalls mammal's trophoblasts that anchors maternal uterine wall and underlines the high adaptation of A. ervi to develop in the host body

    Superconducting Fluctuation investigated by THz Conductivity of La2x_{2-x}Srx_xCuO4_4 Thin Films

    Full text link
    Frequency-dependent terahertz conductivities of La2x_{2-x}Srx_xCuO4_4 thin films with various carrier concentrations were investigated. The imaginary part of the complex conductivity considerably increased from far above a zero-resistance superconducting transition temperature, TczeroT_\text{c}^\text{zero}, because of the existence of the fluctuating superfluid density with a short lifetime. The onset temperature of the superconducting fluctuation is at most 2Tczero\sim 2T_\text{c}^\text{zero} for underdoped samples, which is consistent with the previously reported analysis of microwave conductivity. The superconducting fluctuation was not enhanced under a 0.5 T magnetic field. We also found that the temperature dependence of the superconducting fluctuation was sensitive to the carrier concentration of La2x_{2-x}Srx_xCuO4_4, which reflects the difference in the nature of the critical dynamics near the superconducting transition temperature. Our results suggest that the onset temperature of the Nernst signal is not related to the superconducting fluctuation we argued in this paper.Comment: J. Phys. Soc. Jpn. in pres

    Designing perturbative metamaterials from discrete models

    Get PDF
    Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce ‘perturbative metamaterials’, a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells
    corecore