408 research outputs found
Mems vaporazing liquid microthruster: A comprehensive review
none4The interest in developing efficient nano and pico-satellites has grown in the last 20 years. Secondary propulsion systems capable of serving specific maneuvers are an essential part of these small satellites. In particular, Micro-Electro-Mechanical Systems (MEMS) Vaporizing Liquid Micro-thrusters (VLM), using water as a propellant, represent today a smart choice in terms of simplicity and cost. In this paper, we first propose a review of the international literature focused on MEMS VLM development, reviewing the different geometries and heating solutions proposed in the liter-ature. Then, we focus on a critical aspect of these micro thrusters: the presence of unstable phenom-ena. In particular, the boiling instabilities and reverse channel flow substantially impact the MEMS VLMs’ performance and limit their applicability. Finally, we review the research focused on the passive and active control of the boiling instabilities, based on VLM geometry optimization and active heating strategies, respectively. Today, these ones represent the two principal research axes followed by the scientific community to mitigate the drawbacks linked to the use of MEMS VLMs.openFontanarosa D.; Francioso L.; De Giorgi M.G.; Vetrano M.R.Fontanarosa, D.; Francioso, L.; De Giorgi, M. G.; Vetrano, M. R
THE SOCIO-SEXUAL EXPERIENCES IN SOUTHERN ITALIANS DURING THE COVID-19 PANDEMIC: A CLUSTERING ANALYSIS
The COVID-19 outbreak has dramatically impacted on socioeconomic structure, individual freedom, general wellbeing, psychological
health and sexuality. Indeed, social distancing, home confinement and the fear of contagion have reduced the possibility of
romantic encounters thus influencing sexual activity, desire and behavior and, consequently, modifying socio-sexual experiences.
The aim of this study is to examine sociosexuality and sociosexual experiences in southern Italians during the COVID-19 pandemic
THE SOCIO-SEXUAL EXPERIENCES IN SOUTHERN ITALIANS DURING THE COVID-19 PANDEMIC: A CLUSTERING ANALYSIS
The COVID-19 outbreak has dramatically impacted on socioeconomic structure, individual freedom, general wellbeing, psychological
health and sexuality. Indeed, social distancing, home confinement and the fear of contagion have reduced the possibility of
romantic encounters thus influencing sexual activity, desire and behavior and, consequently, modifying socio-sexual experiences.
The aim of this study is to examine sociosexuality and sociosexual experiences in southern Italians during the COVID-19 pandemic
Modelling the effect of SMP production and external carbon addition on S-driven autotrophic denitrification
The aim of this study was to develop a mathematical model to assess the effect of soluble microbial products production and external carbon source addition on the performance of a sulfur-driven autotrophic denitrification (SdAD) process. During SdAD, the growth of autotrophic biomass (AUT) was accompanied by the proliferation of heterotrophic biomass mainly consisting of heterotrophic denitrifiers (HD) and sulfate-reducing bacteria (SRB), which are able to grow on both the SMP derived from the microbial activities and on an external carbon source. The process was supposed to occur in a sequencing batch reactor to investigate the effects of the COD injection on both heterotrophic species and to enhance the production and consumption of SMP. The mathematical model was built on mass balance considerations and consists of a system of nonlinear impulsive differential equations, which have been solved numerically. Different simulation scenarios have been investigated by varying the main operational parameters: cycle duration, day of COD injection and quantity of COD injected. For cycle durations of more than 15 days and a COD injection after the half-cycle duration, SdAD represents the prevailing process and the SRB represent the main heterotrophic family. For shorter cycle duration and COD injections earlier than the middle of the cycle, the same performance can be achieved increasing the quantity of COD added, which results in an increased activity of HD. In all the performed simulation even in the case of COD addition, AUT remain the prevailing microbial family in the reactor
Simulated microgravity triggers epithelial mesenchymal transition in human keratinocytes
The microgravitational environment is known to affect the cellular behaviour inducing modulation of gene expression and enzymatic activities, epigenetic modifications and alterations of the structural organization. Simulated microgravity, obtained in the laboratory setting through the use of a Random Positioning Machine (RPM), represents a well recognized and useful tool for the experimental studies of the cellular adaptations and molecular changes in response to weightlessness. Short exposure of cultured human keratinocytes to the RPM microgravity influences the cellular circadian clock oscillation. Therefore, here we searched for changes on the regenerative ability and response to tissue damage of human epidermal cells through the analysis of the effects of the simulated microgravity on the re-epithelialization phase of the repair and wound healing process. Combining morphological, biochemical and molecular approaches, we found that the simulated microgravity exposure of human keratinocytes promotes a migratory behavior and triggers the epithelial-mesenchymal transition (EMT) through expression of the typical EMT transcription factors and markers, such as Snail1, Snail2 and ZEB2, metalloproteases, mesenchymal adhesion molecules and cytoskeletal components
Anti-Invasive Activity of Bovine Lactoferrin against Listeria monocytogenes.
We have investigated the possible role of bovine lactoferrin in protecting the intestinal epithelium from bacterial infections, using as an in vitro model enterocyte-like cell lines HT-39 and Caco-2 infected with a food-borne pathogen, Listeria monocytogenes . When infection occurred in the presence of 1 mg/ml of bovine lactoferrin, in the form of apolactoferrin or iron- or manganese-saturated forms, the adhesion of bacteria to eukaryotk cells was unaffected, but the number of internalized bacteria was reduced by 42- to 125-fold. The possibility of a toxic effect of lactoferrin was excluded, because bovine lactoferrin was used at nonbactericidal and noncytotoxic concentrations
Tumor-derived microvesicles modulate antigen cross-processing via reactive oxygen species-mediated alkalinization of phagosomal compartment in dendritic cells
Dendritic cells (DCs) are the only antigen-presenting cells able to prime naĂŻve T cells and
cross-prime antigen-specific CD8+ T cells. Their functionality is a requirement for the
induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated,
the in vivo mechanisms underlying efficient antigen cross-processing and presentation
are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs
mediated by microvesicles (MVs) enhances antigen immunogenicity. This mechanism
is also relevant for cross-presentation of those tumor-associated glycoproteins such as
MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble
molecules. Here, we present pieces of evidence that the internalization of tumor-derived
MVs modulates antigen-processing machinery of DCs. Employing MVs derived from
ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake
modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS)
accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the
MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal
compartment. Further pieces of evidence suggest that efficacious antigen cross-priming
of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by
MV internalization and the function of the antigen-processing machinery of DCs. These
results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity
by tuning the antigen-processing machinery of DCs, besides being carrier of
tumor antigens. Furthermore, these findings have important implications for the exploitation
of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies
Sinapic Acid Release at the Cell Level by Incorporation into Nanoparticles: Experimental Evidence Using Biomembrane Models
Sinapic acid (SA), belonging to the phenylpropanoid family, and its derivatives are secondary metabolites found in the plant kingdom. In recent years, they have drawn attention because of their various biological activities, including neuroprotective effects. In this study, SA was incorporated into two different nanoparticle systems, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). The influence of different concentrations of SA on the nanoparticle systems was evaluated. It was studied the efficacy of the nanoparticle systems to release the active ingredient at cell level through the use of models of biological membranes represented by multilamellar vesicles (MLV) of dimyristoylphosphatidylcholine (DMPC) and conducting kinetic studies by placing in contact SLN and NLC, both unloaded and loaded with two different amounts of SA, with the same biological membrane model. Differential scanning calorimetry (DSC) was used for these studies. The results indicated a different distribution of SA within the two nanoparticle systems and that NLC are able to incorporate and release SA inside the structure of the biological membrane model
Genotypic and phenotypic heterogeneity in Alicyclobacillus acidoterrestris: a contribution to species characterization
Alicyclobacillus acidoterrestris is the main cause of most spoilage problems in fruit juices and acidic products. Since soil borne species often contaminate fruit juices and do not need strict extreme requirements for survival, it is a great concern to investigate whether and how soil species could evolve from their ecological niches in microbial community to new environments as fruit juices. In this study, 23 isolates of thermo-acidophilic, spore-forming bacteria from soil were characterized by cultural and molecular methods. In addition, 2 strains isolated from a spoilage incident in pear juice were typed. Strains phenotyping showed that they could be grouped into 3 different clusters, and some isolates showed identical or quite similar patterns. Analyzing pH and temperature ranges for growth, the majority of strains were able to grow at values described for many species of Alicyclobacillus. Qualitative utilization of lysine, arginine and indole production from tryptophan revealed, for the first time, deamination of lysine and decarboxylation of arginine. Resistance to 5% NaCl as well as the ability to hydrolyze starch and gelatin, nitrate reduction, catalase and oxidase activities confirmed literature evidences. Examining of 16S rRNA, showed that isolates were divided into three blocks represented by effectively soil species and strains that are moving from soil to other possible growing source characterized by parameters that could strongly influence bacterial survival. RAPD PCR technique evidenced a great variability in banding patterns and, although it was not possible to obtain genotypically well-distinguished groups, it was feasible to appreciate genetic similarity between some strains. In conclusion, the investigation of a microbial community entails a combination of metagenomic and classic culture-dependent approaches to expand our knowledge about Alicyclobacillus and to look for new subspecies
Childhood vaccinations: A pilot study on knowledge, attitudes and vaccine hesitancy in pregnant women
Background. The objective of this pilot study was to test a questionnaire aimed at assessing knowledge of and attitudes towards vaccination, as well as intention to vaccinate, among pregnant women.
Methods. The questionnaire was self-administered by 49 pregnant women attending antenatal classes at three Family Centers in Rome.
Results. Poor knowledge of vaccinations, inadequate attention from healthcare professionals, recurrent consultation of unreliable sources of information, and misconceptions about the side effects of vaccines, all contribute to vaccine hesitancy. Where appropriate, questionnaire sections were shown to be internally consistent.
Conclusion. The questionnaire proved reliable and is suitable for further studies
- …