2,772 research outputs found

    Novel metallic and insulating states at a bent quantum Hall junction

    Full text link
    A non-planar geometry for the quantum Hall (QH) effect is studied, whereby two quantum Hall (QH) systems are joined at a sharp right angle. When both facets are at equal filling factor nu the junction hosts a channel with non-quantized conductance, dependent on nu. The state is metallic at nu = 1/3, with conductance along the junction increasing as the temperature T drops. At nu = 1, 2 it is strongly insulating, and at nu = 3, 4 shows only weak T dependence. Upon applying a dc voltage bias along the junction, the differential conductance again shows three different behaviors. Hartree calculations of the dispersion at the junction illustrate possible explanations, and differences from planar QH structures are highlighted.Comment: 5 pages, 4 figures, text + figs revised for clarit

    A Holistic Professional Development model for South African physical science teachers

    Get PDF
    The state of mathematics and science education in South Africa is a cause for concern. This situation can be attributed, in part, to many mathematics and science teachers’ limited content knowledge, ineffective teaching approaches, and unprofessional attitudes. To address these three problem areas simultaneously, a holistic model for the development of Grades 10 to 12 Physical Science teachers was constructed and evaluated against national and international benchmarks. The effects of the model were assessed over a period of four years with 75 teachers. The model was developed in a distance education context, with no face-to-face contact required. It comprises the following elements: a study guide which integrates the development of teachers’ content knowledge, pedagogical content knowledge, cognitive skills and experimental skills; reflective journals; assignments; workshops; peer support and sciencekits. We briefly describe the research that culminated in the Holistic ProfessionalDevelopment (HPD) model, followed by an account of each element of the model. We then present evidence that suggests that the model is effective in helping teachers develop along three desired dimensions, namely, content knowledge, teaching approaches, and professional attitudes

    Vertical quantum wire realized with double cleaved-edge overgrowth

    Get PDF
    A quantum wire is fabricated on (001)-GaAs at the intersection of two overgrown cleaves. The wire is contacted at each end to n+ GaAs layers via two-dimensional (2D) leads. A sidegate controls the density of the wire revealing conductance quantization. The step height is strongly reduced from 2e^2/h due to the 2D-lead series resistance. We characterize the 2D density and mobility for both cleave facets with four-point measurements. The density on the first facet is modulated by the substrate potential, depleting a 2um wide strip that defines the wire length. Micro-photoluminescence shows an extra peak consistent with 1D electron states at the corner.Comment: 4 pages, 4 figure

    Dynamics of Nucleation in the Ising Model

    Full text link
    Reactive pathways to nucleation in a three-dimensional Ising model at 60% of the critical temperature are studied using transition path sampling of single spin flip Monte Carlo dynamics. Analysis of the transition state ensemble (TSE) indicates that the critical nuclei are rough and anisotropic. The TSE, projected onto the free energy surface characterized by cluster size, N, and surface area, S, indicates the significance of other variables in addition to these two traditional reaction coordinates for nucleation. The transmission coefficient along N is ~ 0.35, and this reduction of the transmission coefficient from unity is explained in terms of the stochastic nature of the dynamic model.Comment: In press at the Journal of Physical Chemistry B, 7 pages, 8 figure

    Quantum Hall Effect in a Two-Dimensional Electron System Bent by 90 Degrees

    Full text link
    Using a new MBE growth technique, we fabricate a two-dimensional electron system which is bent around an atomically sharp 90 degree corner. In the quantum Hall regime under tilted magnetic fields, we can measure equilibration between both co- and counter-propagating edge channels of arbitrary filling factor ratio. We present here 4-point magnetotransport characterization of the corner junction with filling factor combinations which can all be explained using the standard Landauer-Buttiker edge channel picture. The success of this description confirms the realization of a new type of quantum Hall edge geometry.Comment: 4 pages, figures included Typographical errors corrected, reference adde

    Aluminum arsenide cleaved-edge overgrown quantum wires

    Full text link
    We report conductance measurements in quantum wires made of aluminum arsenide, a heavy-mass, multi-valley one-dimensional (1D) system. Zero-bias conductance steps are observed as the electron density in the wire is lowered, with additional steps observable upon applying a finite dc bias. We attribute these steps to depopulation of successive 1D subbands. The quantum conductance is substantially reduced with respect to the anticipated value for a spin- and valley-degenerate 1D system. This reduction is consistent with disorder-induced, intra-wire backscattering which suppresses the transmission of 1D modes. Calculations are presented to demonstrate the role of strain in the 1D states of this cleaved-edge structure.Comment: Submitted to Applied Physics Letter

    Generalized four-point characterization method for resistive and capacitive contacts

    Get PDF
    In this paper, a four-point characterization method is developed for resistive samples connected to either resistive or capacitive contacts. Provided the circuit equivalent of the complete measurement system is known including coaxial cable and connector capacitances as well as source output and amplifier input impedances, a frequency range and capacitive scaling factor can be determined, whereby four-point characterization can be performed. The technique is demonstrated with a discrete element test sample over a wide frequency range using lock-in measurement techniques from 1 Hz - 100 kHz. The data fit well with a circuit simulation of the entire measurement system. A high impedance preamplifier input stage gives best results, since lock-in input impedances may differ from manufacturer specifications. The analysis presented here establishes the utility of capacitive contacts for four-point characterizations at low frequency.Comment: 21 pages, 10 figure

    Nanometer-scale sharpness in corner-overgrown heterostructures

    Full text link
    A corner-overgrown GaAs/AlGaAs heterostructure is investigated with transmission and scanning transmission electron microscopy, demonstrating self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In the AlGaAs layers we observe self-ordered diagonal stripes, precipitating exactly at the corner, which are regions of increased Al content measured by an XEDS analysis. A quantitative model for self-limited growth is adapted to the present case of faceted MBE growth, and the corner sharpness is discussed in relation to quantum confined structures. We note that MBE corner overgrowth maintains nm-sharpness even after microns of growth, allowing the realization of corner-shaped nanostructures.Comment: 4 pages, 3 figure

    Fermi liquid to Luttinger liquid transition at the edge of a two-dimensional electron gas

    Full text link
    We present experimental results on the tunneling into the edge of a two dimensional electron gas (2DEG) obtained with a GaAs/AlGaAs cleaved edge overgrown structure in a strong perpendicular magnetic field. While the 2DEG exhibits typical fractional quantum Hall features of a very high mobility sample, we observe the onset of a non-linear current-voltage characteristic in the vicinity of nu=1. For filling factor nu<1 the system is consistent with a non-Fermi liquid behavior, such as a Luttinger liquid, whereas for nu>1 we observe an Ohmic tunneling resistance between the edge and a three dimensional contact, typical for a Fermi liquid. Hence, at the edge, there is a transition from a Luttinger liquid to a Fermi liquid. Finally, we show that the Luttinger liquid exponent at a given filling factor is not universal but depends on sample parameters.Comment: 4 pages, 4 figure
    • …
    corecore