51 research outputs found

    TGF-β1 Exerts Opposing Effects on Grass Carp Leukocytes: Implication in Teleost Immunity, Receptor Signaling and Potential Self-Regulatory Mechanisms

    Get PDF
    In fish immunity, the regulatory role of transforming growth factor-β1 (TGF-β1) has not been fully characterized. Here we examined the immunoregulatory effects of TGF-β1 in grass carp peripheral blood leukocytes (PBL) and head kidney leukocytes (HKL). It is interesting that TGF-β1 consistently stimulated the cell viability and the mRNA levels of pro-inflammatory cytokines (Tnfα and Ifnγ) and T/B cell markers [Cd4-like (Cd4l), Cd8α, Cd8β and Igμ] in PBL, which contrasted with its inhibitory tone in HKL. Further studies showed that grass carp TGF-β1 type I receptor, activin receptor-like kinase 5 (ALK5), was indispensable for the immunoregulatory effects of TGF-β1 in PBL and HKL. Notably, TGF-β1 persistently attenuated ALK5 expression, whereas immunoneutralization of endogenous grass carp TGF-β1 could increase ALK5 mRNA and protein levels. It is consistent with the observation that TGF-β1 decreased the number of ALK5+ leukocytes in PBL and HKL, revealing a negative regulation of TGF-β1 signaling at the receptor level. Moreover, transient treatment with TGF-β1 for 24 h was sufficient to induce similar cellular responses compared with the continuous treatment. This indicated a possible mechanism by which TGF-β1 triggered the down-regulation of ALK5 mRNA and protein, leading to the desensitization of grass carp leukocytes toward TGF-β1. Accordingly, our data revealed a dual role of TGF-β1 in teleost immunity in which it can serve as a positive or negative control device and provided additional mechanistic insights as to how TGF-β1 controls its signaling in vertebrate leukocytes

    Characterisation and expression analysis of the Atlantic halibut (Hippoglossus hippoglossus L.) cytokines: IL-1β, IL-6, IL-11, IL-12β and IFNγ

    Get PDF
    Genes encoding the five Atlantic halibut (Hippoglossus hippoglossus L.) cytokines; interleukin (IL)-1β, IL-6, IL-11b, IL-12βc, and interferon (IFN) γ, were cloned and characterised at a molecular level. The genomic organisation of the halibut cytokine genes was similar to that seen in mammals and/or other fish species. Several mRNA instability motifs were found within the 3′-untranslated region (UTR) of all cytokine cDNA sequences. The putative cytokine protein sequences showed a low sequence identity with the corresponding homologues in mammals, avian and other fish species. Nevertheless, important structural features were presumably conserved such as the presence, or absence in the case of IL-1β, of a signal peptide, secondary structure and family signature motifs. The relative expression pattern of the cytokine genes was analyzed in several halibut organs, revealing a constitutive expression in both lymphoid and non-lymphoid organs. Interestingly, the gills showed a relatively high expression of IL-1β, IL-12βc and IFNγ. The real time RT-PCR data also showed that the mRNA level of IL-1β, IL-6, IL-12βc and IFNγ was high in the thymus, while IL-11b was relatively highly expressed in the posterior kidney and posterior gut. Moreover, the halibut brain showed a relatively high level of IL-6 transcripts. Anterior kidney leucocytes in vitro stimulated with imiquimod showed a significant increase in mRNA level of the five halibut cytokine genes. The sequence and characterisation data presented here will be useful for further investigation of both innate and adaptive immune responses in halibut, and be helpful in the design of vaccines for the control of various infectious diseases

    Virus genomes and virus-host interactions in aquaculture animals

    Full text link

    The evolution of the macrophage-specific enhancer (Fms intronic regulatory element) within the CSF1R locus of vertebrates

    Get PDF
    The Csf1r locus encodes the receptor for macrophage colony-stimulating factor, which controls the proliferation, differentiation and survival of macrophages. The 300 bp Fms intronic regulatory element (FIRE), within the second intron of Csf1r, is necessary and sufficient to direct macrophage-specific transcription. We have analysed the conservation and divergence of the FIRE DNA sequence in vertebrates. FIRE is present in the same location in the Csf1r locus in reptile, avian and mammalian genomes. Nearest neighbor analysis based upon this element alone largely recapitulates phylogenies inferred from much larger genomic sequence datasets. One core element, containing binding sites for AP1 family and the macrophage-specific transcription factor, PU.1, is conserved from lizards to humans. Around this element, the FIRE sequence is conserved within clades with the most conserved elements containing motifs for known myeloid-expressed transcription factors. Conversely, there is little alignment between clades outside the AP1/PU.1 element. The analysis favours a hybrid between "enhanceosome" and "smorgasbord" models of enhancer function, in which elements cooperate to bind components of the available transcription factor milieu

    Ranavirus Host Immunity and Immune Evasion

    Full text link

    Supplementary Material for: Colony-Stimulating Factor-1-Responsive Macrophage Precursors Reside in the Amphibian <b><i>(Xenopus laevis)</i></b> Bone Marrow rather than the Hematopoietic Subcapsular Liver

    No full text
    Macrophage precursors originate from and undergo lineage commitment within designated sites of hematopoiesis, such as the mammalian bone marrow. These cells subsequently differentiate in response to stimulation with macrophage colony-stimulating factor-1 (CSF-1). The amphibian bone marrow, unlike that of mammals, has been overlooked as a source of leukocyte precursors in favor of the liver subcapsular region, where hematopoiesis occurs in anurans. Here we report that the bone marrow rather than the liver periphery provides macrophage progenitors to the amphibian <i>Xenopus laevis</i>. We identified the amphibian CSF-1, examined its gene expression in developing and virally infected <i>X. lae</i><i> vis</i> and produced it in recombinant form (r<i>Xl</i>CSF-1). This r<i>Xl</i>CSF-1 did not bind or elicit proliferation/differentiation of subcapsular liver cells. Surprisingly, a subpopulation of bone marrow cells engaged this growth factor and formed r<i>Xl</i>CSF-1 concentration-dependent colonies in semisolid medium. Furthermore, r<i>Xl</i>CSF-1-treated bone marrow (but not liver) cultures comprised of cells with characteristic macrophage morphology and high gene expression of the macrophage marker CSF-1 receptor. Together, our findings indicate that in contrast to all other vertebrates studied to date, committed <i>Xenopus </i>macrophage precursor populations are not present at the central site of hematopoiesis, but reside in the bone marrow

    Leaf nodule endosymbiotic Burkholderia confer targeted allelopathy to their Psychotria hosts

    Full text link
    After a century of investigations, the function of the obligate betaproteobacterial endosymbionts accommodated in leaf nodules of tropical Rubiaceae remained enigmatic. We report that the α-d-glucose analogue (+)-streptol, systemically supplied by mature Ca.Burkholderia kirkii nodules to their Psychotria hosts, exhibits potent and selective root growth inhibiting activity. We provide compelling evidence that (+)-streptol specifically affects meristematic root cells transitioning to anisotropic elongation by disrupting cell wall organization in a mechanism of action that is distinct from canonical cellulose biosynthesis inhibitors. We observed no inhibitory or cytotoxic effects on organisms other than seed plants, further suggesting (+)-streptol as a bona fide allelochemical. We propose that the suppression of growth of plant competitors is a major driver of the formation and maintenance of the Psychotria–Burkholderia association. In addition to potential agricultural applications as a herbicidal agent, (+)-streptol might also prove useful to dissect plant cell and organ growth processes

    Amphibian (Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Use of Expanded Repertoires of Type I and Type III Interferon Cytokines

    No full text
    While amphibians around the globe are facing catastrophic declines, in part because of infections with pathogens such as the Frog Virus 3 (FV3) ranavirus; the mechanisms governing amphibian susceptibility and resistance to such pathogens remain poorly understood. The type I and type III interferon (IFN) cytokines represent a cornerstone of vertebrate antiviral immunity, while our recent work indicates that tadpoles and adult frogs of the amphibian Xenopus laevis may differ in their IFN responses to FV3. In this respect, it is notable that anuran (frogs and toads) tadpoles are significantly more susceptible to FV3 than adult frogs, and thus, gaining greater insight into the differences in the tadpole and adult frog antiviral immunity would be invaluable. Accordingly, we examined the FV3-elicited expression of a panel of type I and type III IFN genes in the skin (site of FV3 infection) and kidney (principal FV3 target) tissues and isolated cells of X. laevis tadpoles and adult frogs. We also examined the consequence of tadpole and adult frog skin and kidney cell stimulation with hallmark pathogen-associated molecular patterns (PAMPs) on the IFN responses of these cells. Together, our findings indicate that tadpoles and adult frogs mount drastically distinct IFN responses to FV3 as well as to viral and non-viral PAMPs, while these expression differences do not appear to be the result of a distinct pattern recognition receptor expression by tadpoles and adults
    corecore