832 research outputs found

    Stability Walls in Heterotic Theories

    Full text link
    We study the sub-structure of the heterotic Kahler moduli space due to the presence of non-Abelian internal gauge fields from the perspective of the four-dimensional effective theory. Internal gauge fields can be supersymmetric in some regions of the Kahler moduli space but break supersymmetry in others. In the context of the four-dimensional theory, we investigate what happens when the Kahler moduli are changed from the supersymmetric to the non-supersymmetric region. Our results provide a low-energy description of supersymmetry breaking by internal gauge fields as well as a physical picture for the mathematical notion of bundle stability. Specifically, we find that at the transition between the two regions an additional anomalous U(1) symmetry appears under which some of the states in the low-energy theory acquire charges. We compute the associated D-term contribution to the four-dimensional potential which contains a Kahler-moduli dependent Fayet-Iliopoulos term and contributions from the charged states. We show that this D-term correctly reproduces the expected physics. Several mathematical conclusions concerning vector bundle stability are drawn from our arguments. We also discuss possible physical applications of our results to heterotic model building and moduli stabilization.Comment: 37 pages, 4 figure

    Implications of the Top Quark Mass Measurement for the CKM Parameters, xsx_s and CP Asymmetries

    Get PDF
    Motivated by the recent determination of the top quark mass by the CDF collaboration, \mt =174 \pm 10 ^{+13}_{-12} GeV, we review and update the constraints on the parameters of the quark flavour mixing matrix VCKMV_{CKM} in the standard model. In performing our fits, we use inputs from the measurements of the following quantities: (i) \abseps, the CP-violating parameter in KK decays, (ii) \delmd, the mass difference due to the \bdbdbar\ mixing, (iii) the matrix elements \absvcb and \absvub, and (iv) BB-hadron lifetimes. We find that the allowed region of the unitarity triangle is very large, mostly due to theoretical uncertainties. (This emphasizes the importance of measurements of CP-violating rate asymmetries in the BB system.) Nevertheless, the present data do somewhat restrict the allowed values of the coupling constant product fBdB^Bdf_{B_d}\sqrt{\hat{B}_{B_d}} and the renormalization-scale invariant bag constant B^K\hat{B}_K. With the updated CKM matrix we present the currently-allowed range of the ratio Vtd/Vts\vert V_{td}/V_{ts} \vert, as well as the standard model predictions for the \bsbsbar\ mixing parameter \xs and the quantities sin2α\sin 2\alpha, sin2β\sin 2\beta and sin2γ\sin^2\gamma, which characterize the CP-asymmetries in BB-decays. The ALEPH collaboration has recently reported a significant improvement on the lower limit on the \bs-\bsb mass difference, ΔMs/ΔMd>11.3\Delta M_s/\Delta M_d > 11.3 (95\% C.L.). This has interesting consequences for the CKM parameters which are also worked out. NOTE: this is a revised and updated version of our previous paper.Comment: LaTeX, 27 pages, 16 uuencoded figures (enclosed), CERN-TH.7398/94, UdeM-GPP-TH-94-0

    Heterotic-type IIA duality with fluxes

    Get PDF
    In this paper we study a possible non-perturbative dual of the heterotic string compactified on K3 x T^2 in the presence of background fluxes. We show that type IIA string theory compactified on manifolds with SU(3) structure can account for a subset of the possible heterotic fluxes. This extends our previous analysis to a case of a non-perturbative duality with fluxes.Comment: 26 pages, minor corrections; version to appear in JHE

    Non-destructive, dynamic detectors for Bose-Einstein condensates

    Full text link
    We propose and analyze a series of non-destructive, dynamic detectors for Bose-Einstein condensates based on photo-detectors operating at the shot noise limit. These detectors are compatible with real time feedback to the condensate. The signal to noise ratio of different detection schemes are compared subject to the constraint of minimal heating due to photon absorption and spontaneous emission. This constraint leads to different optimal operating points for interference-based schemes. We find the somewhat counter-intuitive result that without the presence of a cavity, interferometry causes as much destruction as absorption for optically thin clouds. For optically thick clouds, cavity-free interferometry is superior to absorption, but it still cannot be made arbitrarily non-destructive . We propose a cavity-based measurement of atomic density which can in principle be made arbitrarily non-destructive for a given signal to noise ratio

    Stabilization of injection-locked lasers using spatial mode interference

    Full text link

    Nongeometric Flux Compactifications

    Full text link
    We investigate a simple class of type II string compactifications which incorporate nongeometric "fluxes" in addition to "geometric flux" and the usual H-field and R-R fluxes. These compactifications are nongeometric analogues of the twisted torus. We develop T-duality rules for NS-NS geometric and nongeometric fluxes, which we use to construct a superpotential for the dimensionally reduced four-dimensional theory. The resulting structure is invariant under T-duality, so that the distribution of vacua in the IIA and IIB theories is identical when nongeometric fluxes are included. This gives a concrete framework in which to investigate the possibility that generic string compactifications may be nongeometric in any duality frame. The framework developed in this paper also provides some concrete hints for how mirror symmetry can be generalized to compactifications with arbitrary H-flux, whose mirrors are generically nongeometric.Comment: 26 pages, JHEP3. v3: references, minor corrections, and clarifications added. v4: sign correcte

    Cardioprotective effect of the mitochondrial unfolded protein response during chronic pressure overload

    Get PDF
    Background The mitochondrial unfolded protein response (UPRmt) is activated when misfolded proteins accumulate within mitochondria and leads to increased expression of mitochondrial chaperones and proteases to maintain protein quality and mitochondrial function. Cardiac mitochondria are essential for contractile function and regulation of cell viability, while mitochondrial dysfunction characterizes heart failure. The role of the UPRmt in the heart is unclear. Objectives The purpose of this study was to: 1) identify conditions that activate the UPRmt in the heart; and 2) study the relationship among the UPRmt, mitochondrial function, and cardiac contractile function. Methods Cultured cardiac myocytes were subjected to different stresses in vitro. Mice were subjected to chronic pressure overload. Tissues and blood biomarkers were studied in patients with aortic stenosis. Results Diverse neurohumoral or mitochondrial stresses transiently induced the UPRmt in cultured cardiomyocytes. The UPRmt was also induced in the hearts of mice subjected to chronic hemodynamic overload. Boosting the UPRmt with nicotinamide riboside (which augments NAD+ pools) in cardiomyocytes in vitro or hearts in vivo significantly mitigated the reductions in mitochondrial oxygen consumption induced by these stresses. In mice subjected to pressure overload, nicotinamide riboside reduced cardiomyocyte death and contractile dysfunction. Myocardial tissue from patients with aortic stenosis also showed evidence of UPRmt activation, which correlated with reduced tissue cardiomyocyte death and fibrosis and lower plasma levels of biomarkers of cardiac damage (high-sensitivity troponin T) and dysfunction (N-terminal pro–B-type natriuretic peptide). Conclusions These results identify the induction of the UPRmt in the mammalian (including human) heart exposed to pathological stresses. Enhancement of the UPRmt ameliorates mitochondrial and contractile dysfunction, suggesting that it may serve an important protective role in the stressed heart

    Nonlinear multidimensional cosmological models with form fields: stabilization of extra dimensions and the cosmological constant problem

    Full text link
    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.Comment: 21 pages, LaTeX2e, minor changes, improved references, fonts include

    Measurement of the B-Meson Inclusive Semileptonic Branching Fraction and Electron-Energy Moments

    Get PDF
    We report a new measurement of the B-meson semileptonic decay momentum spectrum that has been made with a sample of 9.4/fb of electron-positron annihilation data collected with the CLEO II detector at the Y(4S) resonance. Electrons from primary semileptonic decays and secondary charm decays were separated by using charge and angular correlations in Y(4S) events with a high-momentum lepton and an additional electron. We determined the semileptonic branching fraction to be (10.91 +- 0.09 +- 0.24)% from the normalization of the electron-energy spectrum. We also measured the moments of the electron energy spectrum with minimum energies from 0.6 GeV to 1.5 GeV.Comment: 36 pages postscript, als available through http://w4.lns.cornell.edu/public/CLNS/, Submitted to PRD (back-to-back with preceding preprint hep-ex/0403052

    Lifetime Differences, direct CP Violation and Partial Widths in D0 Meson Decays to K+K- and pi+pi-

    Full text link
    We describe several measurements using the decays D0->K+K- and pi+pi-. We find the ratio of partial widths, Gamma(D0->K+K-)/Gamma(D0->pi+pi-), to be 2.96+/-0.16+/-0.15, where the first error is statistical and the second is systematic. We observe no evidence for direct CP violation, obtaining A_CP(KK) = (0.0+/-2.2+/-0.8)% and A_CP(pipi = (1.9+/-3.2+/-0.8)%. In the limit of no CP violation we measure the mixing parameter y_CP = -0.012+/-0.025+/-0.014 by measuring the lifetime difference between D0->K+ K- or pi+pi- and the CP neutral state, D0->K-pi+. We see no evidence for mixing.Comment: 14 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communicatio
    corecore