986 research outputs found

    A Lagrangian-based continuum homogenization approach applicable to molecular dynamics simulations

    Get PDF
    AbstractThe continuum notions of effective mechanical quantities as well as the conditions that give meaningful deformation processes for homogenization problems with large deformations are reviewed. A continuum homogenization model is presented and recast as a Lagrangian-based approach for heterogeneous media that allows for an extension to discrete systems simulated via molecular dynamics (MD). A novel constitutive relation for the effective stress is derived so that the proposed Lagrangian-based approach can be used for the determination of the “stress–deformation” behavior of particle systems. The paper is concluded with a careful comparison between the proposed method and the Parrinello–Rahman approach to the determination of the “stress–deformation” behavior for MD systems. When compared with the Parrinello–Rahman method, the proposed approach clearly delineates under what conditions the Parrinello–Rahman scheme is valid

    Discovery of X-rays from the supernova remnant G0.9+0.1

    Get PDF
    During the BeppoSAXBeppoSAX survey of the Galactic Center region, we have discovered X-ray emission from the central region of the supernova remnant G0.9+0.1. The high interstellar absorption (N_H about 3 times 10^{23} cm^-2) is consistent with a distance of order of 10 kpc and, correspondingly, an X-ray luminosity of about 10^{35} erg s^{-1}. Although we cannot completely rule out a thermal origin of the X-ray emission, its small angular extent (radius of about 2'), the good fit with a power law, the presence of a flat spectrum radio core, and the estimated SNR age of a few thousand years, favour the interpretation in terms of synchrotron emission powered by a young, energetic pulsar.Comment: 4 pages, 1 figure. Uses espcrc2.sty (included). To appear in The Active X-ray Sky: Results from BeppoSAX and Rossi-XTE, Nuclear Physics B Proceedings Supplements, L. Scarsi, H. Bradt, P. Giommi and F. Fiore (eds.), Elsevier Science B.

    Magnetic switching in granular FePt layers promoted by near-field laser enhancement

    Full text link
    Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle x-ray scattering at an x-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, one order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between "up" and "down" magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material, with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer

    Comparison of s- and d-wave gap symmetry in nonequilibrium superconductivity

    Full text link
    Recent application of ultrafast pump/probe optical techniques to superconductors has renewed interest in nonequilibrium superconductivity and the predictions that would be available for novel superconductors, such as the high-Tc cuprates. We have reexamined two of the classical models which have been used in the past to interpret nonequilibrium experiments with some success: the mu* model of Owen and Scalapino and the T* model of Parker. Predictions depend on pairing symmetry. For instance, the gap suppression due to excess quasiparticle density n in the mu* model, varies as n^{3/2} in d-wave as opposed to n for s-wave. Finally, we consider these models in the context of S-I-N tunneling and optical excitation experiments. While we confirm that recent pump/probe experiments in YBCO, as presently interpreted, are in conflict with d-wave pairing, we refute the further claim that they agree with s-wave.Comment: 14 pages, 11 figure

    The Geometry of D=11 Killing Spinors

    Get PDF
    We propose a way to classify all supersymmetric configurations of D=11 supergravity using the G-structures defined by the Killing spinors. We show that the most general bosonic geometries admitting a Killing spinor have at least a local SU(5) or an (Spin(7)\ltimes R^8)x R structure, depending on whether the Killing vector constructed from the Killing spinor is timelike or null, respectively. In the former case we determine what kind of local SU(5) structure is present and show that almost all of the form of the geometry is determined by the structure. We also deduce what further conditions must be imposed in order that the equations of motion are satisfied. We illustrate the formalism with some known solutions and also present some new solutions including a rotating generalisation of the resolved membrane solutions and generalisations of the recently constructed D=11 Godel solution.Comment: 36 pages. Typos corrected and discussion on G-structures improved. Final version to appear in JHE

    The spinorial geometry of supersymmetric heterotic string backgrounds

    Full text link
    We determine the geometry of supersymmetric heterotic string backgrounds for which all parallel spinors with respect to the connection ^\hat\nabla with torsion HH, the NS\otimesNS three-form field strength, are Killing. We find that there are two classes of such backgrounds, the null and the timelike. The Killing spinors of the null backgrounds have stability subgroups K\ltimes\bR^8 in Spin(9,1)Spin(9,1), for K=Spin(7)K=Spin(7), SU(4), Sp(2)Sp(2), SU(2)×SU(2)SU(2)\times SU(2) and {1}\{1\}, and the Killing spinors of the timelike backgrounds have stability subgroups G2G_2, SU(3), SU(2) and {1}\{1\}. The former admit a single null ^\hat\nabla-parallel vector field while the latter admit a timelike and two, three, five and nine spacelike ^\hat\nabla-parallel vector fields, respectively. The spacetime of the null backgrounds is a Lorentzian two-parameter family of Riemannian manifolds BB with skew-symmetric torsion. If the rotation of the null vector field vanishes, the holonomy of the connection with torsion of BB is contained in KK. The spacetime of time-like backgrounds is a principal bundle PP with fibre a Lorentzian Lie group and base space a suitable Riemannian manifold with skew-symmetric torsion. The principal bundle is equipped with a connection λ\lambda which determines the non-horizontal part of the spacetime metric and of HH. The curvature of λ\lambda takes values in an appropriate Lie algebra constructed from that of KK. In addition dHdH has only horizontal components and contains the Pontrjagin class of PP. We have computed in all cases the Killing spinor bilinears, expressed the fluxes in terms of the geometry and determine the field equations that are implied by the Killing spinor equations.Comment: 73pp. v2: minor change

    Use of behavioural activation to manage pain: a systematic scoping review

    Get PDF
    Background: Behavioural activation (BA) is an effective treatment for depression; however, it is unclear if it can be used to manage pain. Objectives: To conduct a scoping review of primary research that reported using BA to support people living with chronic pain to understand how BA had been used in relation to pain. In addition, we wanted to understand whether there were any reported changes in that pain, and how and who delivered BA. Eligibility: criteria Primary research published in English. Sources of evidence: We searched seven databases MEDLINE, Ovid Embase, Ovid Emcare, PsycINFO, CINAHL, Scopus and Web of Science, for primary research. No initial date limit was used with the date the searches were conducted used as the end date limit (1 July 2021). Charting methods: A customised data extraction table was developed, piloted and used. Results: 551 papers were screened for inclusion, with 15 papers included in our review. Studies were conducted in North America and in Canada. These included three case studies, nine uncontrolled trials and three randomised controlled trials. Only two studies reported pain as the primary outcome. BA was applied across a range of pain related conditions. The dose of BA ranged from 3 to 16 sessions. Duration of treatment was 3 weeks to 12 months. Most studies reported reductions in pain following exposure to BA. Conclusion: BA has the potential to reduce pain. Caution needs to be exercised in the interpretation of these findings as a high risk of bias was observed in most studies. High-quality research is required to test if BA is an effective intervention for chronic pain.Sandra Walsh, G Lorimer Moseley, Richard John Gray, Marianne Gillam, Kate M. Gunn, Trevor Barker, Kham Tran, Tesfahun Eshetie, Martin Jone

    Nongeometric Flux Compactifications

    Full text link
    We investigate a simple class of type II string compactifications which incorporate nongeometric "fluxes" in addition to "geometric flux" and the usual H-field and R-R fluxes. These compactifications are nongeometric analogues of the twisted torus. We develop T-duality rules for NS-NS geometric and nongeometric fluxes, which we use to construct a superpotential for the dimensionally reduced four-dimensional theory. The resulting structure is invariant under T-duality, so that the distribution of vacua in the IIA and IIB theories is identical when nongeometric fluxes are included. This gives a concrete framework in which to investigate the possibility that generic string compactifications may be nongeometric in any duality frame. The framework developed in this paper also provides some concrete hints for how mirror symmetry can be generalized to compactifications with arbitrary H-flux, whose mirrors are generically nongeometric.Comment: 26 pages, JHEP3. v3: references, minor corrections, and clarifications added. v4: sign correcte

    Superstrings with Intrinsic Torsion

    Get PDF
    We systematically analyse the necessary and sufficient conditions for the preservation of supersymmetry for bosonic geometries of the form R^{1,9-d} \times M_d, in the common NS-NS sector of type II string theory and also type I/heterotic string theory. The results are phrased in terms of the intrinsic torsion of G-structures and provide a comprehensive classification of static supersymmetric backgrounds in these theories. Generalised calibrations naturally appear since the geometries always admit NS or type I/heterotic fivebranes wrapping calibrated cycles. Some new solutions are presented. In particular we find d=6 examples with a fibred structure which preserve N=1,2,3 supersymmetry in type II and include compact type I/heterotic geometries.Comment: 58 pages, LaTeX; v2: New section on solutions including an example with N=3 supersymmetry and discussion of heterotic compactifications. Details on conventions and references added. v3: added an explicit example of non-integrable product structure in Appendix C; some typos fixe
    corecore