
Volume XI, No. 1, 2010 164 Issues in Information Systems

STRATEGIES FOR IMPROVING SYSTEMS DEVELOPMENT PROJECT SUCCESS

Christopher G. Jones, California State University, christopher.jones@csun.edu

Glen L. Gray, California State University, glen.gray@csun.edu

Anna H. Gold, Erasmus University, agold@rsm.nl

David W. Miller, California State University, david.miller@csun.edu

ABSTRACT

Sixteen years after the publication of the Standish

Group’s first CHAOS report in 1994, there is little

cause for celebration. True, system development

project (SDP) success rates have improved to 32%

from the benchmark low of 16.2%; however, when

68% of projects are either cancelled or seriously

challenged with regard to budget, schedule, or

project scope, there is considerable room for

improvement in the SDP process. This research

examines the critical risk factors responsible for

system development failure with an eye toward the

role internal auditors could take in increasing the

likelihood of SDP success. In this paper we provide

an overview of our efforts to identify a relevant set of

critical factors by synthesizing the voluminous

practitioner and academic literature. From the

hundreds of potential factors identified, we conclude

with a preliminary list of 16 strategies for improving

SDP success that are the subject of an ongoing

investigation.

Keywords: System Development Project, Critical

Success Factor (CSF), Critical Failure Factor (CFF),

System Development Risk, Role of Internal Auditing

INTRODUCTION

The publication of the Standish Group’s first biennial

survey of IT project performance in 1994 revealed a

staggering 31.1% of all U.S. system development

projects (SDPs) ended in failure. Almost fifty-three

percent (52.7%) were seriously challenged, either

through budget overruns, missed deadlines, or feature

sets that did not meet user requirements. Only 16.2%

of SDPs were considered successful, coming in on

budget and on time [32].

Fourteen years later the statistics were somewhat

better but still cause for concern. In the 2008 CHAOS

report, the Standish Group reported that SDP success

rates had improved to 32% from the benchmark low

of 16.2%. Outright failures declined to 24% and

―challenged‖ projects fell to 44% [30]. This is an

encouraging trend. However when 68% of SDPs are

either cancelled or seriously over-budget, behind

schedule, or short some requirements, there is

considerable room for improvement in the system

development process. Not everyone accepts Standish

Group’s oft-quoted statistics on project resolution.

Recently some academics have been challenging the

Standish Group’s research methodology [13, 19].

Even so, SDP success (defined as on-time, within

budget, and including the promised feature set) is

rare.

In 2002, U.S. Congress attempted to legislate better

financial systems. Tucked within the language of the

2002 Sarbanes-Oxley Act (SOX), Congress

mandated a stronger connection between financial

information systems and internal controls [14].

Although SOX only applies directly to U.S. public

companies, many privately held, non-for-profit, and

foreign companies have voluntarily implemented

SOX-like provisions. The impact on IT has been

―significantly greater levels of auditing on process

controls within IT governance‖ [21]. As a result, the

role of internal auditors as members of the corporate

governance team has changed radically, elevating

their organizational stature from mere application

control experts to a meta-control role over the SDP

process itself [15]. This is an emerging role that is

being shaped by the strengths internal auditors bring

to the systems development process. These strengths

include a holistic, organizational perspective; a

business-value orientation; and a rich history of post-

implementation reviews from which to draw best

practices for process improvement.

This research explores strategies for improving the

success rate of SDPs. Research methods included a

literature review, a series of focus groups with

internal auditors, and a survey of members of The

Institute of Internal Auditors (IIA). The research is

ongoing. In the interest of brevity, this paper focuses

solely on one segment of the early stages of our

research – a literature review of the critical factors

responsible for SDP outcome.

FACTORS IN SYSTEMS DEVELOPMENT

The academic and practitioner IT literature is replete

with case histories, analyses, and editorials regarding

SDP failures. There is a separate, although less

voluminous, literature on project successes. Over

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/18452947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Strategies for Improving Systems Development Project Success

Volume XI, No. 1, 2010 165 Issues in Information Systems

time the literature has moved from a focus on project

failure to identification and mitigation of system

risks. We begin this literature review with a

discussion of early research into critical factors. From

there we examine later attempts by practitioners and

academics to isolate critical SDP factors. We

conclude this section with an analysis of the CHAOS

report – perhaps the most widely-cited research on

SDP outcomes. In the next section we explore

academic research attempts to synthesize the critical

factors into a complete set.

Early Research on Project Failure

As early as 1973, Morgan and Soden examined

determinants of failed information systems projects.

After studying ten unsuccessful projects, Morgan and

Soden concluded that most failures were due (not

surprisingly) to management’s inability to manage –

that is plan, organize, and control [28].

Using a case study of a state planning agency,

Schmitt and Kozar analyzed the events and problems

leading to development of a land-use management

information systems by an outside consultant that

was completed but never used. According to Schmitt

and Kozar’ 1978 paper, the land-use MIS was beset

by a series of risk factors that created a degenerative

error network that eventual lead to project failure.

Risk factors included: (a) lack of systems analysis,

(b) immaturity of the client’s decision making

process, (c) excess trust placed in the outside

consultant, (d) an ill-defined contract between agency

and consulting firm, (e) IS developed outside the user

organization, (f) no user involvement in data

selection, (f) a single system approach rather than

integration with existing systems, (g) non-aggregated

data collected at too low a level of granularity, and

(h) weak planning products and documentation [28].

According to Alter and Ginzberg’s 1978 article on

managing uncertainty in MIS implementations, the

top risks, identified through structured interviews

with designers and users, were: (a) ―designer lacking

experience with similar systems, (b) nonexistent or

unwilling users, (c) multiple users or designers, (d)

turnover among users, designers or maintainers, (e)

lack of support for system, (f) inability to specify the

purpose or usage patterns in advance, (g) inability to

predict and cushion impact on all parties, and (h)

technical problems, cost-effectiveness issues‖ [1, p.

27].

Gordon Davis’ 1982 paper on requirements

determination strategies listed three risks: (a)

―existence and stability of a usable set of

requirements, (b) user’s ability to specify

requirements, and (c) ability of analysts to elicit

requirements and evaluate their correctness and

completeness‖ [7, p. 20].

McFarlan’s 1982 portfolio approach to information

systems also named three key risks: (a) ―size in cost,

time, staffing level, or number of affected parties, (b)

familiarity of the project team and the IS organization

with the target technologies, and (c) how well

structured is the project task‖ [26, p. 250].

According to Boehm’s 1991 oft-cited article on

software risk management, the top ten risk items

according to a survey of experienced project

managers were: ―(1) personnel shortfalls, (2)

unrealistic schedules and budgets, (3) developing the

wrong functions and properties, (4) developing the

wrong user interface, (5) gold-plating (i.e., unneeded

features), (6) continuing stream of requirements

changes, (7) shortfalls in externally furnished

components, (8) shortfalls in externally performed

tasks, (9) real-time performance shortfalls, and (10)

straining computer-science capabilities‖ [3, p. 35].

Barki et al. identified five general risk factor

categories: (a) ―newness of the technology, (b)

application size, (c) lack of expertise, (d) application

complexity, and (e) organizational environment‖ [10,

pp. 40 – 43].

Ropponen and Lyytinen examined risk-management

practices of Finnish software project managers by

analyzing 83 projects across a variety of

organizations. Six risk categories were identified: (a)

―scheduling and timing, (b) system functionality, (c)

subcontracting, (d) requirement management, (e)

resource usage and performance, and (f) personnel

management‖ [10, pp. 41- 43].

Project Abandonment

Ewusi-Mensah and Przasnyski [11] analyzed failed

systems development efforts to identify factors

responsible for project abandonment. Senior IS

executives at Fortune 500 companies were asked to

complete a lengthy questionnaire; 82 (5.6%)

responded. A factor analysis identified 12 dimensions

across three categories–economic, technological and

organizational (listed in order of importance)–(1)

―escalating project costs and completion schedules,

(2) lack of appropriate technical infrastructure and

expertise, (3) actual project expenditures and duration

below estimates, (4) technological inadequacies and

shortcomings, (5) loss of critical personnel and

management changes, (6) end-user acquiescence, (7)

Strategies for Improving Systems Development Project Success

Volume XI, No. 1, 2010 166 Issues in Information Systems

management commitment and perceptions, (8) end-

user conflicts and technical disagreements, (9) satisfy

existing or emergent technology, (10) lack of funds,

(11) discouraged end-user participation, and (12)

consequence of merger/acquisition by another

company‖ [11, p. 193].

In later (popularized) discussions of his research,

Ewusi-Mensah [9] reduced the number of project

abandonment factors to seven: (a) ―unrealistic project

goals and objectives, (b) inappropriate project-team

composition, (c) project management and control

problems, (d) inadequate technical know-how, (e)

problematic technology base/infrastructure, (f) lack

of executive support and commitment, and (g) cost

overruns and schedule delays‖ [10, p. 43]. Ewusi-

Mensah has since revised the list of abandonment

factors for a book length examination of system

development failures to include two new items: (a)

―changing requirements and, (b) insufficient user

commitment and involvement‖ [10, p. 43].

Updated Risk List

Using a modified Delphi survey approach of 41

project managers from three countries, Keil, Cule,

Lyytinen and Schmidt [20], identified and ranked

critical risk factors for software projects. The

resulting ―universal set of risk factors‖ (ordered by

relative importance) included: (1) ―lack of top

management commitment to the project, (2) failure to

gain user commitment, (3) misunderstanding the

requirements, (4) lack of adequate user involvement,

(5) failure to manage end user expectations, (6)

changing scope/objectives, (7) lack of required

knowledge/skills in the project personnel, (8) lack of

frozen requirements, (9) introduction of new

technology, (10) insufficient/inappropriate staffing,

and (11) conflict between user departments‖[20, p.

78].

For the most part, rankings were similar from country

to country with the exception of ―conflict between

user departments‖ which was more important in

Hong Kong and Finland than in the USA. When

compared to Boehm’s [3] 1991 top-10 risk list

discussed earlier, Keil et al.’s [20] list is broader and

more up-to-date with less focus on execution factors

under the project manager’s control. Boehm’s list

was derived from his experience in the defense

industry in the 1980s before the advent of distributed

computing and off-shoring.

Outsourcing Risk

Based on a case study of the failure of the Bezeq-

AMS Billing System, Natovich [27] discussed the

additional systems development risk introduced by

outsourcing. According to the study, vendor risks

were unique to outsourced IT projects and by virtue

of their contractual nature not applicable to in-house

projects. Natovich defined vendor risk as ―the risks

that the client bears when contracting the project to

an external vendor rather than conducting it in-

house‖ [27, p. 410]. Such supplementary risks

included: (a) adversarial relationships resulting in

loss of trust between client and vendor, (b) de-

escalation of vendor commitment when

circumstances change, and (c) difficulty in severing

contractual engagements in response to the threat of

litigation.

Natovich faults Keil et al.’s [20] IT risk classification

framework as too narrow, claiming that it only takes

into consideration in-house development. He

particularly finds problematic the case where the IT

project has been outsourced and the vendor becomes

the project manager, since the framework ignores the

risks attendant in the vendor-client relationship.

An SEI View of Failure

Citing data from the 2000 Chaos Report, the

Software Engineering Institute’s (SEI) Watts

Humphrey [17] made the case that system

development failure is project size dependent.

Projects exceeding $10 million in projected cost have

no chance for success, whereas projects under

$750,000 have a 55% success rate. According to

Humphrey, the historical reason for large-scale

system development failure was due to lack of

planning. The introduction of sound project

management practices has improved project success

rates but has not completely eliminated the unique

challenges facing large projects.

CHAOS Report

The Standish Group, source for the project resolution

statistics cited in the introduction to this paper,

conducts biennial (once every two years) research on

IT project performance using a combination of focus

groups, surveys, and executive interviews. From

1994 through 2006 it had examined over 50,000

completed IT projects [16]. In the 1994 CHAOS

report, the Standish Group identified ten key risk

factors responsible for project failure. In order of

ranking, with the most cited factor listed first, project

impairment factors included: ―(1) incomplete

Strategies for Improving Systems Development Project Success

Volume XI, No. 1, 2010 167 Issues in Information Systems

requirements, (2) lack of user involvement, (3) lack

of resources, (4) unrealistic expectations, (5) lack of

executive support, (6) changing requirements and

specifications, (7) lack of planning, (8) didn’t need it

any longer, (9) lack of IT management, and (10)

technology illiteracy‖ [32, p. 6].

In CHAOS 1994, the Standish Group also identified a

top ten list of critical factors responsible for project

success (Table 1). Many of these factors are the

semantic inversion of the failure factors. For

example, ―user involvement,‖ the Standish Group’s

top ranked CSF, is linguistic reversal of ―lack of user

input‖ and ―lack of user involvement.‖ According to

the 1994 CHAOS report, the key CSFs for project

success (listed in order of importance) were: ―(1) user

involvement, (2) executive management support, (3)

clear statement of requirements, (4) proper planning,

(5) realistic expectations, (6) smaller project

milestones, (7) competent staff, (8) ownership, (9)

clear vision and objectives, and (10) hard-working,

focused staff‖ [32, p. 5] .

Except for some minor rewording, the top three CSFs

have remained the same since the original 1994

report. Table 1 summarizes CHAOS critical success

factors (CSFs) by survey year for information

available through publicly available sources, as the

CHAOS Report is proprietary.

Table 1 CHAOS Report Success Factors by Rank
Factor 1994 1998 2000 2002 2006 2008

User Involvement 1 1 2 1 1 1

Executive Management Support 2 2 1 2 2 2

Clear Statement of Requirements 3 6 7

Proper Planning 4 8

Realistic Expectations 5

Smaller Project Milestones 6 5

Competent Staff 7 7 10 8 8

Ownership 8 9

Clear Vision and Objectives 9 3 4 4 3 3

Hard-Working, Focused Staff 10

Project Management 4 3 3 6 7

Minimized Scope 5 5

Standard Tools and Infrastructure 6 7 10 10

Formal Methodology 8 8 9

Reliable Estimates 9 9

Agile Requirements Process 6 5 6

Optimizing Scope/Optimization 4 5

Financial Management 7

Emotional Maturity 4

Execution 9

Other 10 10

CHAOS Challenged

Although the CHAOS report is the most oft-quoted

source for statistics on project resolution (success,

challenged, failure), lately some academics have

challenged the Standish Group’s research

methodology [8]. Robert Glass, editor emeritus of

Elsevier’s Journal of Systems and Software, the

publisher of the Software Practitioner newsletter, and

respected contributor to the Communications of the

ACM, recently questioned the extent of the project

failure rates reported by the Standish Group and

whether the data supported a real ―software crisis‖ as

portrayed in the CHAOS reports [12, 13].

Glass [13, p. 16] suggested that the Standish research

is ―biased towards reports of failure‖ because it tends

to focus primarily on organizations with failed or

failing projects. According to Glass ―software

projects succeed far more often than they fail‖

because the era of the Computing Age ―wouldn’t be

possible if we didn’t have astoundingly successful

software to make all those computers do the

wonderful things they do‖ [12, p. 110]. The real

failure rate, Glass [12] speculated, is closer to 10 or

15%, but he only has anecdotal support for his

figures.

Jørgensen and Moløkken examined the cost overrun

statistics reported over the years in the CHAOS

report [19]. They specifically questioned the 1994

CHAOS statistic of an average 189% cost overrun on

challenged projects. Using data from three academic

studies on cost overruns, Jørgensen and Moløkken

Strategies for Improving Systems Development Project Success

Volume XI, No. 1, 2010 168 Issues in Information Systems

estimated the real average is closer to 33%.

Interestingly, the most recent cost overrun figures

(54%) reported by the Standish Group [30] are closer

to Jørgensen and Moløkken findings than the original

1994 CHAOS report. Jim Johnson, founder and

chairman of the Standish Group, has responded to the

criticisms of his firm’s data with assurances that the

research is conducted appropriately but that specifics

are proprietary [18].

CRITICAL FACTOR FRAMEWORKS

A fundamental purpose of this research was to

identify the factors that contribute to the success of

SDPs. A review of the professional and academic

literature revealed an abundance of factors cited as

contributing to SDP success and failure. Reported

factors varied across project context, system size,

development methodology, role of survey participant

or field informant, and a host of other parameters.

The number of critical factors was so great (literally

in the hundreds), that complete analysis of the factor

set was not practically feasible. As a consequence, in

order to proceed with the research, the sizeable

number of factors described in the literature had to be

synthesized into a manageable taxonomy of items

deemed critical to the success of SDPs. To do this,

we investigated existing taxonomies for grouping

critical factors.

Risk Management Approach

Lyytinen, Mathiassen, and Ropponen [26] explored

risk management as a promising approach to reduce

system development failure. In their study, Lyytinen

et al. adopted Harold Leavitt’s socio-technical model

as a framework for analyzing risk management and

risk resolution. Under Leavitt’s model, organizational

change is governed by a multivariate system of four

interacting components – task, structure, actor, and

technology. As applied to system development,

Lyytinen et al. characterized tasks as system goals;

structure as project organization; actors as users,

managers, developers; and, technology as the

technical platform and development tools.

Unaddressed risk was seen as a disequilibrium (i.e.,

variation in socio-technical theory) that was to be

managed until balance was regained.

The relationship between the four components is as

important as the individual component itself. For

example, risks associated with actor-technology

interdependencies may be created by the mismatch of

people and technology. Using the modified socio-

technical model, Lyytinen et al. analyzed four

classical approaches to software risk management

and reduction. The result was a list of risk items and

related risk resolution techniques classified into each

of the four socio-technical components or the four

component-component interactions. Of particular

interest were the risk item lists from the four studies

mentioned in the previous section (Boehm; Davis;

Alter and Ginzberg; and McFarlan).

Risk Categorization Taxonomy-Part I

As part of Keil et al’s [20] research, discussed earlier,

in which 11 critical risk factors were identified, Kiel

and his colleagues constructed a multi-dimensional

framework for categorizing software risks. In this

typology, risks fell into four quadrants along two

dimensions: (a) perceived level of project manager

control and, (b) perceived relative importance of risk.

Quadrant 1 ―Customer Mandate,‖ for example,

included risks with high relative importance over

which the project manager has little control.

Examples include lack of top management

commitment or inadequate user involvement. Risk

mitigation for this quadrant requires ―relationship

management, trust-building, and political skills‖ [20,

p. 80]. Keil et al. argued that the framework

simplified risk management by clustering CFFs into a

reduced set of classes subject to mitigation through

broad strategic initiatives.

Risk Categorization Taxonomy-Part II

Cule, Schmidt, Lyytinen and Keil [6] extended their

previous research on risk framework by detailing

further the risk categorization taxonomy and the

behavioral model for risk mitigation. The four

quadrants remained the same but the names were

changed. Quadrant 1 Customer Mandate became

Client. Quadrant 2 Scope and Requirements became

Self. Quadrant 3 Execution morphed into Task.

Quadrant 4 remained as Environment (see Table 2).

In addition, the quadrants were now grouped into two

categories – inside risks and outside risks. For each

risk category, there was a one-word label for the

associated behavioral strategy. To mitigate Client

risks, project managers should ―relate‖ by managing

the relationship with those who fund and those who

will use the system. For Self, the strategic term is

―assess.‖ Here Cule et al. [6] suggested, once again,

the importance of independent auditors in gauging

the project manager’s abilities, capabilities, and

knowledge regarding IS development. Evaluation

could be performed on a peer basis by another

experienced project manager or through the exercise

of conducting a process maturity assessment using

Strategies for Improving Systems Development Project Success

Volume XI, No. 1, 2010 169 Issues in Information Systems

Table 2 Risk items grouped by type and category (Cule, Schmidt, Lyytinen, & Keil, 2000, p. 68)
INSIDE RISKS

Self Task

• Not Managing Change Properly
• Lack of Effective Project Management Skills

• Lack of Effective Project Management Methodology

• Improper Definition of Roles and Responsibilities
• Misunderstanding the Requirements

• Poor or Non-Existent Control

• Poor Risk Management
• Choosing the Wrong Development Strategy

• Lack of ―People Skills‖ in Project Leadership

• Project Not Based on Sound Business Case
• No Planning or Inadequate Planning

• Bad Estimation
• Lack of Effective Development Process/Methodology

• Trying New Development Method/Technology

 During Important Project
• Lack of Required Knowledge/Skills In the Project

 Personnel

• Poor Team Relationships:
• Insufficient Staffing

• Excessive Use of Outside Consultants

• Lack of Available Skilled Personnel
• Introduction of New Technology

• Stability of Technical Architecture

• Multi-Vendor Projects Complicate Dependencies
OUTSIDE RISKS

Client Environment

• Lack of Top Management Commitment to the

 Project

• Failure to Gain User Commitment
• Conflict Between User Departments

• Failure to Get Project Plan Approval From all Parties

• Failure to Manage End User Expectations
• Lack of Adequate User Involvement

• Lack of Cooperation from Users
• Failure to Identify All Stakeholders

• Growing Sophistication of Users Leads to Higher

 Expectations
• Managing Multiple Relationships with Stakeholders

• Lack of Appropriate experience of the User

 Representatives
• Unclear/Misunderstood Scope/Objectives

• Number of Organizational Units Involved

• Lack of Frozen Requirements

• New and/or Unfamiliar Subject Matter for Both

 Users and Developers

• Under Funding of Development

•Under Funding of Maintenance

• "All or Nothing"

•Artificial Deadlines

• A Climate of Change in the Business and

 Organizational Environment that Create Instability in

 the Project
• Mismatch Between Company Culture and Required

 business Process Changes Needed for New System

• Project that Are Intended to Fail
• Unstable Corporate Environment

• Change in Ownership or Senior Management
• Changing Scope/Objectives

• ―Preemption‖ of Project by higher Priority Project

• Staffing Volatility
• External Dependencies Not Met

• Lack of Control Over Consultants, Vendors, and Sub-

 Contractors

Note: The 11 ―universal set of risk factors‖ (Keil, Cule, Lyytinen, & Schmidt, 1998) are highlighted in bold.

externally available tools from the Software

Engineering Institute. Another approach would

involve benchmarking against other projects and

organizations. Task risks could be ―controlled‖ using

tools provided in project management texts.

Environment risks could be ―monitored‖ in order to

keep abreast of the infrequent but unpredictable

changes that can derail development efforts.

Perhaps the biggest contribution of the article was a

comprehensive list of the 53 risk items mentioned in

Keil et al. [20] but never delineated in their entirety.

Cule and his colleagues [6] categorized these 53 risks

into the four major risk quadrants based on their own

project management experiences. Table 2 displays

the risks identified in the Keil et al.[20] Delphi study

grouped by internal and external risk and categorized

into the four risk quadrants. The 11 ―universal set of

risk factors‖ have been bolded. It is interesting to

note that 7 (63%) of the top 11 CFFs were considered

beyond the control of the project manager.

Risk Groups

In ―Identifying Software Project Risks: An

International Delphi Study,‖ Schmidt et al. [28]

provided a complete exposition of the methodology

behind the research leading to the comprehensive 53-

item list of systems development risks (Table 2)

listed above. As part of the study, Schmidt and his

colleagues used three Delphi panels to validate a

taxonomy based on the source of the risks. The result

was a list of 14 risk groups. As part of their research,

Schmidt et al. categorized the 53 risk items by risk

group and provided a detailed description of each

individual risk item.

One of the interesting findings from this cross-

cultural study was that relative risk varies by country.

While there seemed to be general agreement on some

of the major risks, there were important differences

regarding the lesser project risks based on cultural

dimensions such as individualism or uncertainty

Strategies for Improving Systems Development Project Success

Volume XI, No. 1, 2010 170 Issues in Information Systems

avoidance. The top system development risks for

U.S. project managers were: (1) lack of top

management commitment to the project, (2)

misunderstanding the requirements, (3) not managing

change properly, (4) failure to gain user commitment,

(5) lack of effective project management skills, (6)

lack of adequate user involvement, (7) failure to

manage end-user expectations, (8) lack of effective

project management methodology, (9)

unclear/misunderstood scope/objectives, (10)

changing scope/objectives, (11) lack of adequate user

involvement, (12) introduction of new technology,

(13) insufficient/inappropriate staffing, and (14) lack

of frozen requirements [28, p. 21).

Failure Factors Categorization

In Yeo’s [34] survey, conducted in 2000, of close to

100 respondents associated with a major project

failure in Singapore, failure factors were grouped into

three organizational categories based largely on

Checkland and Holwell’s [5] Processes for

Organization Meanings (POM) model. Under this

taxonomy, factors dealing with culture, leadership,

and organizational issues are classified as ―context-

driven‖ and are shaped by corporate management and

users. Factors related to technology and business

process, the ―what‖ and the ―how,‖ are labeled as

―content-driven‖ and are the purview of IT

professionals.

Matters related to strategic formulation and change

management were categorized as ―process-driven‖

and were seen to be largely under the influence of the

project manager. The top five process-driven CFFs

were: ―(1) underestimate of timeline, (2) weak

definition of requirements and scope, (3) inadequate

project risk analysis, (4) incorrect assumptions

regarding risk analysis, and (5) ambiguous business

needs and unclear vision‖ [34, p. 245].

Top context-driven issues were: (1) lack of user

involvement and inputs from the onset, (2) top down

management style, (3) poor internal communication,

(4) absence of an influential champion and change

agent, and (5) reactive and not pro-active in dealing

with problems‖ [34, p. 245]. Finally, for content-

driven issues, the top CFFs were: (1)

consultant/vendor underestimated the project scope

and complexity, (2) incomplete specifications when

project started, (3) inappropriate choice of software,

(4) changes in design specifications late in [the]

project, and (5) involve[s] high degree of

customization [sic] in application‖ [34, p. 245].

Beyond Risk Checklists

Building on prior research on software risk factors,

Wallace, Keil, and Rai [33] performed a cluster

analysis on survey results from a convenience sample

of project managers (n = 507) who were members of

the Information Systems Special Interest Group

(ISSIG) of the Project Management Institute (PMI).

Respondents were asked to rate 44 risk variables and

9 performance measures using a seven-point Likert

scale. Cluster analysis revealed six risk dimensions:

(a) team, (b) organizational environment, (c)

requirements, (d) planning and control, (e) user, and

(f) complexity. The performance measures were

clustered into two groups: (a) product, and (b)

process. Product performance measured user

satisfaction and product quality; process measured

budget and schedule constraints. A complete list of

risk items categorized by risk dimension is found in

the study.

Wallace et al.’s risk categorization overlaps to some

extent earlier cluster analyses such as Barki et al.’s

[2] research involving 35 risk variables and 5

dimensions discussed earlier. Barki’s work focused

more on technological and scale risks and lumps

users in with developers under the heading

―expertise‖; Wallace separated users from team

members and broke down development risk into two

categories: (a) requirements, and (b) planning and

control. Both studies share two general risk

categories: (a) organizational environment and (b)

complexity.

As part of the Wallace [33] study, the six risk

dimensions were analyzed across project risk levels

to determine if risks were differentiated by project

type. Low risk projects were found to have high

complexity risk. High risk projects had high

requirements, planning, control, and organization

risks. The study also examined influence of project

scope, systems sourcing practices, and strategic

orientation on the six risk dimensions. Sourcing

arrangements were found to affect team risk and

planning and control risk; strategic orientation of the

project was found to impact project complexity risk.

Project scope influenced all six risk dimensions.

Approaches to Software Risk Management

The Software Engineering Institute [4] has developed

a comprehensive risk mitigation strategy based on an

exhaustive study of risk factors. Carr et al.[4] found

three major categories of systems development risk:

(a) product engineering, (b) development

environment, and (c) program constraints. Product

Strategies for Improving Systems Development Project Success

Volume XI, No. 1, 2010 171 Issues in Information Systems

engineering included such factors as requirements,

design, code, unit and integration test, and

engineering specialties. Development environment

consisted of considerations for development process

and system, management process and methods, and

work environment. Program constraints referred to

resources, contract, and program interfaces. The SEI

risk taxonomy has a decidedly computer science feel

to it.

SYNTHESIS OF LITERATURE REVIEW

A survey of the taxonomy literature associated with

critical factors revealed a variety of approaches for

categorization depending on the contextual

perspective (e.g., process, product, culture, or

organization). For this research, our context was

organizational/cultural in nature, based on an

―outsider’s view from the inside,‖ specifically, that of

the internal auditor. To supplement the literature

review, we conducted focus groups with internal

auditors to identify SDP success factors over which

internal audit had influence. In all, over 38 individual

factors emerged from the focus group discussions.

Two factors, however, stood out as particularly

germane to this research (Systems Development

Process Monitoring; System Interoperability), owing

to what focus group participants felt was the internal

auditor's holistic perspective on how projects evolve

during the SDP life cycle. A full discussion of the

focus groups is beyond the scope of this paper but will

be included in the final research monograph.

A summary of the various factors and taxonomies

derived from the literature review and focus groups

served as a starting point for an initial attempt at

deriving a reduced factor set. A naturalistic inquiry

approach [23] was used. Through many hours of

group and individual analysis, duplicate removal, and

factor consolidation, the preliminary inventory of

items was revised into a final list of factors that were

to be used in the survey phase of our research. As

part of the refinement process, a taxonomy co-

evolved that met our categorization scheme criteria of

drawing factors from both the literature and the focus

groups without creating category overlaps or type-

subtype dependencies. Five broad categories emerged

from the factor classification analysis: (1) People, (2)

Organization, (3) Project, (4) Project Management,

and (5) Externalities. The final list of key factors (see

Table 3) is presented below, grouped by taxonomic

category, and described using the language that was

employed in the questionnaire.

Table 3 SDP Critical Success Factors by Category

Category Factor Definition

People Executive support Key executives providing alignment with business strategy, as well as financial, schedule,

emotional, and conflict resolution support.

 Project personnel Acquiring, retaining, and managing skilled project personnel in the face of turnover and
other personnel hurdles.

 Project management

expertise

Project leaders possessing basic project management skills and practices.

 Conflict management Influencing the emotions and actions of project stakeholders to minimize the impact of
ambition, arrogance, ignorance, passive-aggressiveness, fear of change, and deceit.

Organization User involvement Involving business and IT users with key consensus-building, decision-making, and

information-gathering processes.

 Business alignment Ensuring stakeholders understand the core value of the project and how it aligns with
business strategy.

Project System requirements Defining system objectives and scope. Capturing user requirements and incorporating them

into the system specification.

 System interoperability Designing the system to work with other systems and functional areas.

Project

Management

System development

methodology

Defining a set of process-based techniques that provide a road map on when, how, and what

events should occur in what order.

 Tools and infrastructure Providing project infrastructure tools that enable management of tasks, resources,
requirements, change, risks, vendors, user acceptance, and quality management.

 Agile optimization Using iterative development and optimization processes to avoid unnecessary features and

ensure critical features are included.

 Change management Monitoring and controlling modifications to system requirements.

 Monitoring of system
development process

Methodically reviewing project milestones for schedule, scope, and budget targets.

 Quality assurance Governing project quality through definitive acceptance criteria, timely testing, issue

identification, and resolution.

 Financial management Managing financial resources, accounting for project budget/costs, and demonstrating the
value of the project.

Externalities Vendor relationship

management

Actively monitoring and controlling contracts with vendors/consultants.

Strategies for Improving Systems Development Project Success

Volume XI, No. 1, 2010 172 Issues in Information Systems

CONCLUSION, LIMITATIONS, AND

FUTURE RESEARCH

A review of the academic and professional literature

found a seemingly boundless number of factors that

authors claim are associated with successful (or

failed) SDPs. However, on closer inspection, it was

clear there were many duplicates and near duplicates

(i.e., different phrasing but with same meaning). In

an effort to reduce the factor set to a manageable

level, we developed a taxonomy based on the

literature review and the unique perspective of our

research. During the factor identification-

consolidation-categorization process we were

mindful that synthesizing success and failure factors

into a single factor could be problematic. We were

cognizant that success was not necessarily the

opposite of failure. Inadequate resource allocation,

for instance, could almost certainly doom an SDP,

but adequate resources would not necessarily assure

success. For this reason, we carefully considered the

unique contribution each factor made, regardless of

its possible linkage to failure or success.

Nevertheless, there is a chance, that during this factor

consolidation process, critical factors may have been

eliminated or marginalizing through aggregation with

related concepts. Our future research will compare

the internal audit rankings for critical success factor

importance with the general IT community. We do

not anticipate the content of the factor list to vary

from what was synthesized from the literature and

focus groups. We do, however, expect CSF rankings

to reflect the unique perspective of IA practitioners.

ACKNOWLEDGMENTS

This paper is part of a larger project sponsored by the

Institute of Internal Auditors Research Foundation

(IIARF). Research involved three lines of inquiry: (1)

factors in SDP success and failure (the subject of this

paper), (2) measures for gauging SDP success, and

(3) the evolving role of the internal auditor in

monitoring SDPs. The literature review phase was

followed by a series of focus groups with internal

auditors, and a survey of The IIA membership to

determine what role internal auditors can play in

increasing the success rate of SDPs. A full discussion

of the remaining two dimensions of the literature

review, the focus groups, and survey results is

planned for a forthcoming IIARF research

monograph. Opinions expressed in this paper are

those of the authors and not necessarily those of the

IIARF or The Institute of Internal Auditors.

REFERENCES

1. Alter, S. & Ginzberg, M. (1978). Managing un-

certainty in MIS implementation. Sloan Manage-

ment Review, 20 (1), 23-31.

2. Barki, H., Rivard, S., & Talbot, J. (1993).

Toward an assessment of software development

risk. Journal of Management Information Sys-

tems, 10 (2), 203-225.

3. Boehm, B. W. (1991). Software risk manage-

ment: Principles and practices. IEEE Software, 8

(1), 32-41.

4. Carr, M. J., Konda, S. L., Monarch, I., Ulrich, F.

C., & Walker, C. F. (1993). Taxonomy-Based

Risk Identification. Carnegie Mellon University.

Pittsburgh, PA: Software Engineering Institute.

5. Checkland, P. & Holwell, S. (1998). Infor-

mation, Systems and Information Systems. Chi-

chester, UK: John Wiley.

6. Cule, P., Schmidt, R., Lyytinen, K., & Keil, M.

(2000). Strategies for heading off IS project

failure. Information Systems Management, 17

(2), 65-73.

7. Davis, G. B. (1982). Strategies for information

requirements determination. IBM Systems

Journal, 21 (1), 4-30.

8. Eveleens, J. L. & Verhoef, C. (2010). The rise

and fall of the CHAOS Report figures. IEEE

Software, 27 (1), 30-36.

9. Ewusi-Mensah, K. (1997). Critical issues in

abandoned information sytems development

projects. Communications of the ACM, 40 (9),

74-80.

10. Ewusi-Mensah, K. (2003). Software Develop-

ment Failures: Anatomy of Abandoned Projects.

Cambridge, MA: The MIT Press.

11. Ewusi-Mensah, K. & Przasnyski, Z. H. (1994).

Factors contributing to the abandonment of

information sytems development projects.

Journal of Information Technology, 9 (3), 185-

201.

12. Glass, R. L. (2005). IT failure rate - 70% or 10-

15%? IEEE Software, 22 (3), 112, 110-111.

13. Glass, R. L. (2006). The Standish Report: Does it

really describe a software crisis? Communi-

cations of the ACM, 49 (8), 15-16.

14. Gray, G. L. (2004). Changing Internal Audit

Practices in the New Paradigm: The SOX

Environment. Altamonte Springs, FL: The IIA

Research Foundation.

15. Gray, G. L. (2008). Then and Now: Expectations

and Reality of Sarbanes-Oxley. Altamonte

Springs, FL: The IIA Research Foundation.

Strategies for Improving Systems Development Project Success

Volume XI, No. 1, 2010 173 Issues in Information Systems

16. Hartmann, D. (2006, August 25). Interview: Jim

Johnson of the Standish Group. Retrieved June

30, 2010, from InfoQ: http://www.infoq.com/

news/Interview-Johnson-Standish-CHAOS

17. Humphrey, W. S. (2005, March). Why big

software projects fail: The 12 key questions.

Cross Talk: The Journal of Defense Software

Engineering, 1-8.

18. Johnson, J. (2006, September 12). Reader

Comments - Re: Two questions to Jim Johnson of

the Standish Group. Retrieved June 30, 2008,

from InfoQ: http://www.infoq.com/news/

Interview-Johnson-Standish-CHAOS

19. Jørgensen, M. & Moløkken-Østvold, K. (2006).

How large are software cost overruns? A review

of the 1994 CHAOS report. Information and

Software Technology, 48 (4), 297-301.

20. Keil, M., Cule, P. E., Lyytinen, K., & Schmidt,

R. C. (1998). A framework for identifying

software project risks. Communications of the

ACM, 41 (11), 76-83.

21. Leih, M. J. (2006). The impact of the Sarbanes-

Oxley Act on IT. Journal of Information

Technology Theory and Application, 8 (3), 13-

30.

22. Levinson, M. (2009, June 18). Recession causes

rising IT project failure rates. Retrieved June 30,

2010, from CIO.com: http://www.cio.com/

article/495306/Recession_Causes_Rising_IT_Pr

oject_Failure_Rates_

23. Lincoln, Y. S. & Guba, E. G. (1985). Natural-

istic Inquiry. Beverly Hills: SAGE Publications.

24. Lindstrom, D. R. (1993). Five ways to destroy a

development project. IEEE Software, 10 (5), 55-

58.

25. Lyytinen, K. & Hirschheim, R. (1988). Infor-

mation failure—A survey and classification of

the empirical literature. In P. Zorkoczy (Ed.),

Oxford Surveys in Information Technology (pp.

257-309). New York, NY, USA: Oxford

University Press, Inc.

26. Lyytinen, K., Mathiassen, L., & Ropponen, J.

(1998). Attention shaping and software risk—A

categorical analysis of four classical risk

management approaches. Information Systems

Research, 9 (3), 233-255.

27. Natovich, J. (2003). Vendor related risks in IT

develoment: A chronology of an outsourced

project failure. Technology Analysis & Strategic

Management, 15 (4), 409-418.

28. Schmidt, R., Lyytinen, K., Keil, M., & Cule, P.

(2001). Indentifying software project risks: An

international Delphi study. Journal of Manage-

ment Information Systems, 17 (4), 5-36.

29. Schmitt, J. W. & Kozar, K. A. (1978).

Management's role in information systems

development failures: A case study. MIS

Quarterly, 2 (2), 7-16.

30. The Standish Group. (2009). CHAOS Summary

2009: The 10 Laws of Chaos. Boston, MA: The

Standish Group International, Inc.

31. The Standish Group. (1998). CHAOS: A Recipe

for Success. Boston, MA: The Standish Group

International, Inc.

32. The Standish Group. (1995). The CHAOS

Report. Boston, MA: The Standish Group

International, Inc.

33. Wallace, L., Keil, M., & Rai, A. (2004).

Understanding software project risk: A cluster

analysis. Information & Management, 42, 115-

125.

34. Yeo, K. (2002). Critical failure factors in infor-

mation system projects. International Journal of

Project Management, 20, 241-246.

