1,319 research outputs found

    Molecular electronic structures : an introduction

    Get PDF
    The present book is an introduction to molecular electronic structural theory. It is aimed at students who have reasonable familiarity with differential and integral calculus and are beginning a study of the physical description of chemical systems. We have decided to concentrate on the description of ground state electronic structures, or, in other words, the principles of chemical bonding in molecules. In this important respect the present volume differs from our earlier book "Molecular Orbital Theory" (Benjamin, 1964), which included a strong emphasis on the description of electronic excited states. In our treatment of molecular wave functions we make use of "symmetry operators", the latter being operators that leave the Hamiltonian unchanged. By using such symmetry operators, it is possible to characterize the electronic structures of molecules. In our opinion, this approach provides good preparation for later studies that may be undertaken in which formal group theory is employed. The heart of the book is Chapter 4, where we discuss in some detail the bonding in several selected molecules. Examples from both organic and inorganic chemistry are included in an attempt to make the coverage as general as possible. Our objective here is to provide an introduction to molecular bonding that will serve as a foundation for more advanced study of electronic structures. Suggested reading and problems are included in each chapter. Some of the problems are challenging, but working them will give the student a much better feeling for the principles involved. The suggested reading is of two types, books (and reviews) and original papers. And we urge students to examine at least some of the older papers in the field, as muck can be learned from them

    Sulfur Fertilization in Texas.

    Get PDF
    4 p

    Structural analysis of a thermal insulation retainer assembly

    Get PDF
    In January 1989 an accident occurred in the National Transonic Facility wind tunnel at NASA Langley Research Center that was believed to be caused by the failure of a thermal insulation retainer. A structural analysis of this retainer assembly was performed in order to understand the possible failure mechanisms. Two loading conditions are important and were considered in the analysis. The first is the centrifugal force due to the fact that this retainer is located on the fan drive shaft. The second loading is a differential temperature between the retainer assembly and the underlying shaft. Geometrically nonlinear analysis is required to predict the stiffness of this component and to account for varying contact regions between various components in the assembly. High, local stresses develop in the band part of the assembly near discontinuities under both the centrifugal and thermal loadings. The presence of an aluminum ring during a portion of the part's operating life was found to increase the stresses in other regions of the band. Under the centrifugal load, high bending stresses develop near the intersection of the band with joints in the assembly. These high bending stresses are believed to be the most likely cause for failure of the assembly

    Indiana State Bar Association Program

    Get PDF
    New Bar Progra

    Compulsory Automobile Insurance

    Get PDF

    Compulsory Automobile Insurance

    Get PDF

    Motion Pictures in Evidence

    Get PDF

    Large-Amplitude Finite Element Flutter Analysis of Composite Panels in Hypersonic Flow

    Get PDF
    A finite-element approach is presented for determining the nonlinear flutter characteristics of two-dimensional isotropic and three-dimensional composite laminated thin panels using the third-order-piston, transverse loading, aerodynamic theory. The unsteady, hypersonic, aerodynamic theory and the von Karman large deflection plate theory are used to formulate the aeroelastic problem. Nonlinear flutter analyses are performed to assess the influence of the higher-order aerodynamic theory on the structure\u27s limit-cycle amplitude and the dynamic pressure of the flow velocity. A solution procedure is presented to solve the nonlinear panel flutter and large-amplitude free vibration finite element equations. This procedure is a linearized updated mode with a nonlinear time function approximation (LUM/NTF) method. Nonlinear flutter analyses are performed for different boundary support-conditions and for various system parameters: plate thickness-to-length ratio, h/a; aspect ratio a/b; material orthotropic ratio, lamination angle, and number of layers; Mach number, M; flow mass-density-to-panel-mass-density ratio, μM; dynamic pressure, λ; and maximum-deflection-to-thickness ratio, c/h. For large amplitude free vibration, alternative classical analytical solutions are available for comparison. Linear finite element flutter for isotropic and composite panels and large-amplitude isotropic panel flutter results are compared with existing classical solutions. The large-amplitude panel flutter results using the full third-order piston aerodynamic theory are presented to assess the influence of the nonlinear aerodynamic theory

    Iron Chlorosis on Turf Grasses, Ornamentals and Vegetables.

    Get PDF
    6 p

    Zinc Deficiency and Fertilization.

    Get PDF
    2 p
    corecore