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ABSTRACT

LARGE-AMPLITUDE FINITE ELEMENT FLUTTER
ANALYSIS OF COMPOSITE PANELS IN HYPERSONIC FLOW

Carl E. Gray, Jr.
Old Dominion University
Director: Dr. Chuh Mei

A finite-element approach is presented for determining the nonlinear flutter characteristics
of two-dimensional isotropic and three-dimensional composite laminated thin panels using
the third-order-piston, transverse loading, aerodynamic theory. The unsteady, hypersonic,
aerodynamic theory and the von Karman large deflection plate the.:; are used to formulate
the aeroelastic problem. Nonlinear flutter analyses are performed to assess the influence of
the higher-order aerodynamic theory on the structure’s limit-cycle amplitude and the dynamic
pressure of the flow velocity. A solution procedure is presented to solve the nonlinear panel
flutter and large-amplitude free vibration finite element equations. This proce.dure is a
linearized updated mode with a nonlinear time function approximation (LUM/NTF) method.
Nonlinear flutter analyses are performed for different boundary support-conditions and for
various system parameters: plate thickness-to-length ratio, h/a; aspect ratio a/b; material
orthotropic ratio, lamination angle, and number of layers; Mach number, M; flow mass-density-
to-panel-mass-density ratio, u/M; dynamic pressure, A; and maximum-deflection-to-thickness
ratio, ¢/h. For large amplitude free vibration, alternative classical analytical solutions are
available for comparison. Linear finite element flutter for isotropic and composite panels and
large-amplitude isotropic panel flutter results are compared with existing classical solutions.
The large-amplitude panel flutter results using the full third-order piston aerodynamic theory

are presented to assess the influence of the nonlinear aerodynamic theory.
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Chapter 1

INTRODUCTION
1.1 Preliminary Remarks

The interaction study between structures and aerodynamics identified a new field of
engineering known as aeroelasticity, see Fig. 1.1. As a result of the need for high speed aircraft,
aeroelasticity has become a dominant consideration in the design of high-speed flight vehicles.
During the late 1950’s through the mid-to-late 1970’s, the panel flutter phenomena, pertaining
to aircraft structures, received a great deal of attention from a large number of investigators.
The aeroelastic panel flutter is the self-excited or self-sustained oscillations of an external panel
of a flight vehicle when exposed to supersonic or hypersonic air flow. Panel flutter differs from
aeroelastic wing flutter in that the aerodynamic forces resulting from the air flow act only on
one side of the panel.

The dawning of flight into the supersonic regime, during the 1950’s, stressed the conflicting
conditions of fabricating a structure strong enough to withstand large aerodynamic forces during
supersonic ﬂjght,‘yet light enough to be economically efficient to allow for an increase in the
flight vehicle’s payload capability. Because of the resurgent interest in flight vehicles such as the
High-Speed Civil Transport (HSCT), the National Aero-Space Plane (NASP), and the Advanced
Tactical Fighter (ATF) that will operate not only at high-supersonic Mach numbers but well
into the hypersonic regime, the additional requirement for energy-efficient, high-strength and
minimum-weight vehicles has become apparent. These requirements have generated an interest
in the advanced composite materials to meet the high-strength minimum-weight requirements.
In addition to the structural material concerns, the issue of the range of applicability of the
most used first-order piston aerodynamic theory into the hypersonic regime has been questioned.
These questions have been generated in response to neglecting the higher-order terms in the

derivation of the first-order theory. It has been hypothesized that the higher-order terms in the
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piston aerodynamic theory, at the large Mach numbers of interest, may be significant. Coupling
these concerns with the realistic need for analytical tools to evaluate complex structures, the
finite element method presents itself as the most appropriate means that can conveniently and

efficiently incorporate all of the known complexities of the physical problem.

1.2 Review of Previous Work

In the previous section, a synopsis to the subject was presented. The panel flutter
phenomenon has been studied in detail to comprehend the physics associated with the problem.
Again, panel flutter is the self-excited or self-sustained (limit-cycle) oscillations of an external
panel of a flight vehicle when exposed to supersonic or hypersonic air flow only on one side
of the panel. In the framework of small deflection (linear) structural theory, there is a critical
value, Acr, of the dynamic pressure (or flow velocity) above which the panel motion becomes
unstable and grows exponentially with time, and below which any disturbance to the panel
results in a decaying motion.

Theoretical considerations of panel flutter using linear theory, as well as an early survey on
the subject up to 1966, was given by Dugundji [1] 1 A thorough summary on both linear and
nonlinear panel flutter through 1970 was given by Dowell [2). Most recently, 1987, Reed, Hanson,
and Alford (3], conducted a survey in the area of hypersonic panel flutter in support of the NASP
program. As disclosed by all of these survey papers, a great quantity of literature exists on
linear panel flutter using different aerodynamic theories, for example references [1,4,5] and many
others. The aerodynamic theory employed for the most part for panel flutter at high supersonic
Mach numbers (M > 1.7 [5]) is the quasi-steady first-order piston aerodynamic theory [6].
Because of the recent renewed interest (3] in flight vehicles that will operate not only at high-
supersonic Mach numbers but well into the hypersonic regime, there is an interest in approaches
that can employ unsteady nonlinear aerodynamic theories. The piston aerodynamic theories,
although several decades old, have generally been employed to approximate the aerodynamic
loads on the panel from local pressures generated by the body’s motion as related to the local
normal component of the fluid velocity. This theory, thus, defines a point-function relationship

between the normal component of the fluid velocity and the local panel pressure. For supersonic

INumbers in brackets indicate reference.
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Mach numbers, these theories reasonably estimate the aerodynamic pressures and are the most
widely used in the literature, see Fig. 1.2. Figure 1.2 was taken from Dowell [7] where he
demonstrated remarkable correlation between conventional flutter analysis and experimental
data to predict the panel’s response. An outstanding presentation of the fundamental theories
and the physical understanding of panel flutter can be found in the book on the subject by
Dowell (7].

In actuality, it is well known [8] that the panel not only bends but also stretches due to large-
amplitude vibrations. Such membrane tensile forces in the panel, due to the induced streiching,
provides a limited stabilizing effect of the “hard spring” type that restrains the panel motion
to be of bounded amplitude for limit-cycle oscillations that increases with amplitude as the
dynamic pressure, Ay, increases. The external skin of a flight vehicle can, thus, withstand
velocities beyond the linear critical value. However, McIntosh [9] has investigated the effects
of hypersonic nonlinear aerodynamic loadings on panel flutter, and his findings indicate that
the higher-order aerodynamic theory may, for some system parameters, produce a “soft spring”
effect that will predict lower limit-cycle flutter velocities than those predicted by the first-order
piston theory even including the effect of membrane tensile forces in the panel. In reference [2],
Dowell identifies four panel flutter theories, types 14 shown in Fig. 1.3, and with the theories
in reference [9] these theories increase to five.

The first partial nonlinear behavior of a fluttering panel was studied by several investigators:
Bolotin [10], Fung [11], Houbolt [12], and Eisely [13]. They were primarily concerned with
determining stability boundaries of two-dimensional plates. Using a two-mode Galerkin
approach, the three-dimensional plate buckling effects on flutter boundaries using the von
Karman deflection theory and Ackert’s aerodynamic theory (also known as a static strip theory
[6,14]) was studied by Fralich [15].

For the full structural nonlinear limit-cycle approach, a variety of analyses methods have
been employed to assess the panel flutter problem. The direct numerical integration approach
in conjunction with Galerkin’s method was first used by Dowell [16,17] to study the nonlinea-
oscillations of simply supported, in-plane elastically restrained, fluttering plates. Dowell
determined that the direct numerical integration (classical) approaches required as a minimum

six linear normal modes to achieve a converged solution for displacements and pogsibly more if

3
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stresses are required [9,18]. For the clamped plates, Ventres [19] also used the direct numerical
integration method by employing both the quasi-steady aerodynamic theory and the generalized
aerodynamic theory, type 2 analysis. Both Dowell and Ventres used the Galerkin’s method to
reduce the governing partial differential equations in time and space to a set of coupled ordinary
differential equations in time which were numerically integrated for arbitrary initial conditions.
The integration was continued until a limit-cycle oscillation of constant amplitude, that was
independent of the initial conditions, was encountered. But because of the highly nonlinear
nature of the aerodynamic theory, there exists just a few references that have investigated the
limit-cycle oscillations of panels for hypersonic flow. MclIntosh [9], using a nonlinear, partial-
third-order piston aerodynamic theory, also integrated the nonlinear equations of motion for
given initial conditions and observed the resultant panel motion versus time until a limit-
cycle of constant amplitude that was independent of initial conditions was reached. As noted
earlier, McIntosh’s findings indicate that the higher-order aerodynamic theory, for some system
parameters, produces a “soft spring” effect that predicted lower limit-cycle flutter velocities.

A number of other classical analytical methods exist for the investigation of limit-cycle
oscillations of panels in supersonic flow. In general, for the supersonic case, Galerkin’s method
is used in the spatial domain, and the panel deflection is then expressed in terms of one to six
linear normal modes. Various techniques in the temporal domain such as harmonic balance
[10, 20-23] have been used successfully to study the subject of panel flutter. This method
requires less computational time than the method of direct integration and is mathematically
comprehensible and systematic, but extremely tedious to implement. Another popular method
to study panel flutter is the perturbation method. Correlation between perturbation techniques
and the harmonic balance method has been shown to be quite good [21,24,25].

Most of the early research in panel flutter using classical analytical methods [26-30] has been
limited to orthotropic materials. Recently, a considerable focus has turned to the application
of anisotropic materials. However, most of this work has been limited to the area of linear
structural theory using classical laminated plate theory. Librescu [31], retaining only the linear
aerodynamic damping terms, derived the governing equations for an arbitrary number of modes
using Galerkin’s method and the Lyapunov stability criterion. He investigated the aeroelastic

stability of orthotropic panels in the vicinity of the critical dynamic pressure. The geometric
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nonlinear flutter of orthotropic panels was recently studied by Eslami {32,33] using harmonic
balance. All of the analytical investigations have been limited to two-dimensional or three-
dimensional rectangular plates with all four edges simply supported or clamped.

Extension of the finite element method to study the linear panel flutter problem was due to
Olson [34,35]. Because of its versatile applicability, effects of aerodynamic damping, complex
panel configurations, flow angularities, in-plane prestress, and laminated anisotropic panel
properties can be easily and conveniently included in the finite element formulation. A review
of the linear panel flutter using finite element methods was given by Yang and Sung [36].

Application of the finite element method to study the supersonic limit-cycle oscillations of
two-dimensional panels was given by Mei and Rogers [37] and Mei [38]. Rao and Reo [39]
also investigated the large-amplitude supersonic flutter of two-dimensional panels with ends
elastically restrained against rotation. Mei and Weidman [40], Han and Yang [41], and Mei and
Wang [42] further extended the finite element method to treat supersonic limit-cycle oscillations
of three-dimensional rectangular and triangular isotropic plates, respectively.

Recently, Sarma and Varadan [43] studied the nonlinear behavior of two-dimensional
isotropic panels using the linear aerodynamic theory. They presented two solution methods
using a seventh-order displacement based finite element; the first method uses the nonlinear
free vibration mode shape as an approximation to the nonlinear panel flutter problem, and the
second method uses the linear panel flutter mode shape as an initial estimate for an iterative
solution process similar to those given in Refs. [3742]. Because of the recent renewed interest
in panel flutter at the high-supersonic/hypersonic speeds [3], Gray, et al. [44] extend the
finite element method to investigate the hypersonic limit-cycle oscillations of two-dimensional
panels which constitutes part of this dissertation. A treatment of the aeroelastic concepts and
principles is covered at the fundamental level in Refs. 45-47.

1.3 Objectives and Scope
The overall goal of the present study is to develop an effective computational strategy for
predicting the nonlinear flutter response of thin anisotropic panels in hypersonic flow. To this
end, there are three global objectives. Since the panel flutter solution using the finite element

formulation is performed in the frequency domain, the first objective is to develop and validate
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a large-amplitude free vibration linearizing method. To assess the effects of the full nonlinear
third-order piston theory aerodynamics, the second objective is to develop and implement a
solution method to solve the nonstandard, nonlinear eigenvalue problem. This objective will
also allow for the solution of large-amplitude, nonlinear, damped, free vibration of panels. The
final objective is to combine the first two objectives and extend the finite element formulation to
include the anisotropic laminated plate theory to study the large-amplitude fluttering composite
panel in ilypersonic flow.

Under the influence of large-amplitude displacements, the mid-plane forces and aerodynamic
damping restrain the motion of the panel to a bounded limit-cycle. Consequently, the von
Karman nonlinear strain-displacement relationships are used in the present formulation. The
aerodynamic loading used in this study is the unsteady full third-order piston aerodynamic
theory. This is the complete expansion up to order three that the most widely used, linear,
first-order theory is derived. The first-order theory has been shown to be valid and yields
reasonable results for supersonic Mach numbers (M > 1.7). The effects of hypersonic nonlinear
aerodynamic loadings on panel flutter will be studied to assess the higher-order aerodynamic
theory to determine the extent to which it produces a “soft spring” effect that will prédict lower
limit-cycle flutter velocities than those predicted by the first-order piston theory. The proposed
solution method develops the nonlinear stiffness and nonlinear aerodynamic influence matrices,
linearizes the nonlinear matrices, transforms the problem formulation from the configuration
space to the state space, then solves, in an iterative manner, the general eigenvalue problem.

The finite element formulation for a type 5 flutter analysis is developed in Chapter 2.
In this Chapter, the governing variational principles for the two-dimensional and three-
dimensional fluttering panel are presented and discussed. The nonlinear homogeneous equations
of motion for the nonlinear finite element formulation are developed to include the displacement
dependent aerodynamic influence and the aerodynamic damping matrices. Large deflection
terms are included in the first- and second-order nonlinear stiffness, aerodynamic influence, and
aerodynamic damping matrices.

The computational solution procedure is developed in Chapter 3. This procedure introduces
a linearization technique for the nonlinear, displacement dependent stiffness, aerodynamic

influence, and aerodynamic damping matrices. The constrained system matrices are linearized
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and an iterative solution procedure similar to that first introduced by Mei [48-50] is implemented
to solve the nonlinear eigenvalue problem by using a single, linearized updated mode shape.
The iterative method is extended to include the generalized velocities so that nonlinear velocity-
dependent aerodynamic effect can be included.

The solution of the large deflection panel flutter problem, including anisotropic material
behavior and unsteady displacement and velocity dependent aerodynamics, is the ultimate
objective of the present research. The present study is the first finite element solution technique
for the large-amplitude composite panel flutter using unsteady displacement and velocity
dependent aerodynamics.

The methodology developed in the present study can be used to obtain large-amplitude free,
damped or undamped, vibration solution, as well as panel flutter results, for two- and three-
dimensional anisotropic panels with arbitrary boundary conditions. Using the finite element
principles to derive these nonlinear solutions is considered to be a significant contribution, since
for complex boundary conditions and unsymmetrical laminates, classical solutions are laborious,
and in some cases, impossible to apply.

Numerical verification results are presented in Chapter 4. The purpose of this chapter is
to provide complete confidence in the numerical procedure and method. This is accomplished
by presenting numerical comparisons with alternate solutions starting from the simplest, large-
amplitude free vibration of a two-dimensional simply-supported panel to the flutter results for
a three-dimensional composite panel. Chapter 5 presents flutter results for two- and three-
dimensional isotropic/composite panels. In addition, studies are presented to illustrate the
effect of each of the nonlinear aerodynamic terms. Concluding remarks and recommendations

for future work are presented in Chapter 6.
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Fig. 1.1 Aeroelastic Interaction.
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Fig. 1.2 Panel Flutter: Schematic of Plate Response using Piston Theory.

(from Dowell [7])
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PANEL FLUTTER THEORIES

TYPE

1. Linear structural theory; linear piston theory aerodynamics.
- Defines flutter boundary, V2 < M < 5.

2. Linear structural theory; linearized potential flow aerodynamics.
- Defines flutter boundary, 1 < M < 5.

3. Nonlinear structural theory; linear piston theory aerodynamics.
- Defines limit-cycle frequency and amplitude, V2 < M < 5.

4. Nonlinear structural theory; linearized potential flow aerodynamics.
- Defines limit-cycle frequency and amplitude, 1 < M < 5.

5. Nonlinear structural theory; nonlinear piston theory aerodynamics.
- Defines limit-cycle frequency and amplitude, M > 5.
(TYPE 3 is a special case of type 5)

Fig. 1.3 General Panel Flutter Theories.
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Chapter 2

FINITE ELEMENT FORMULATION

In this chapter, t'he governing element equations are derived for both two- and three-
dimensional thin panels subjected to aerodynamic loads using the third-order piston aerody-
namic theory.

Consider the two-dimensional flat panel as shown in Fig. 2.1 or the three-dimensional
laminated panel as shown in Fig. 2.2 of length @, width b for a three-dimensional panel, thickness
h, and mass density p with a fluid flow above the panel at Mach number M. It is assumed that
fluid flow above the panel is in the positive = coordinate direction and that the effects of the
cavity on the back side of the panel can be neglected. The sign convention to be followed is
that positive flow is in the direction of increasing = and a positive deflection is into the cavity.
Since this study addresses thin panels (a/h > 50), the effect of transverse shear deformations,
normally associated with thick plates (laminates) is neglected (see Jones [51] for example). This
assumption is justified due to the minimum weight constraint that generally drives the panel’s

design parameters such that a/h is greater than 100.

2.1 Hamilton’s Principle for a Continuum
The most general form of Hamilton’s principle for a nonconservative elastic continuous

medium is

7[/(pﬁ,tt-6ﬂ)dV—- (/ (7-54) dV+/(jz‘-6ﬁ)dS—f(a:6e)dV)} =0  (21)
\"s S |4

ty W
where S and V are the surface area and volume of the element, respectively. The terms under
the time integral represent the work done on the body at any time ¢ by the resultant force
in moving through the virtual displacement &§%; f is the body force, and is neglected in this
formulation; 7 is the specified surface stress vector; and (o: é¢) is a stress-virtual strain-tensor

product.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 Constitutive and Strain-Displacement Relationships
For the two-dimensional panel, the basic material properties are associated with a single
direction. Thus, only an isotropic material will be considered. However, since for the three-
dimensional panel, there are two primary material directions, the formulation will be for the

most general anisotropic laminated material of which an isotropic material is a special case.

2.2.1 Two-Dimensional Isotropic Panel

For the two-dimensional isotropic panel, the stress-strain relationship becomes

E

= ————(1 — ”2)6 (2'2)

o

where E is the isotropic Young’s modulus and » is Poisson’s ratio.
The form of the strain-displacement relationship for an arbitrary point through the thickness,

h, is as follows:

1
€=Uy +'2' wa?: —~2W,zx (23)

2.2.2 Three-Dimensional Orthotropic Panel

For the orthotropic lamina [51], the stress-strain relationship in z-y coordinates are

{o} = { oy } = (@] { & } — [@){e} (2.4)
Tzy Tzy

Q11 = Quicos? O+ 2(Q12 + 2Qs6) sin? 0 cos? 6 + Qgq sin @

in which

Qa2 = Q11 5in? 0 + 2(Q12 + 2Qg) sin? 0 cos? 6 + Qop cos? 6

Q12 = (Q11 + Q22 — 4Qes) sin? 6 cos? d cos? § + Q1a(sin 6 + cos? 6)

Q16 = (Qu1 — @12 — 2Qes) sin 8 cos 8 + (Q12 — Q22 + 2Qgg) sin® fcos
Q26 = (Qu1 — Q12 — 2Q66) sin® Hcos 0 + (Q12 — Q22 + 2Qg6) sin f cos®

Qes = (Q11 + Q22 — 2Q12 — 2Qe6) sin? f cos? 8 + Qpg(sin? 6 + cos?8)

(25)

The bar over the Q,-j denotes the transformed reduced stiffnesses relative to the z-y-z coordinate
system noted in Fig. 2.2. The Q;;’s are the reduced stiffnesses in the material coordinate

systems, also shown in Fig. 2.2.
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For the orthotropic lamina the reduce stiffnesses, Q;;'s, are

_ En

Qu = (1 —vigva1)
_ vigEg»

e =T (2.6)
__ Exn

Qr = (1 = viov1)

Qe6 = G12

where the ¢ and j subscripts denote the material coordinate axes. The constitutive relationship
for an isotropic material is a special case where Ej1 = E, Egp=FE, G12=G = ﬂl_li—_vi’ and
vig="v.

Similarly, the form of the strain-displacement relationships for an arbitrary point through

the thickness, h, are as follows:

1 5
€z = Uyx +§’UJ,$ —2W,zx

€y = Uy +%w,§ —2W,yy (2.7)

Yoy = Uy +Vyz +W,z Wyy —2W,zy
where u and v are the in-plane (midsurface) displacements measured along the z and y
coordinate axes, respectively, and w is the transverse displacement measured along the z-axis

normal to the plane of the panel. The nonlinear terms in Eqs. (2.3) and (2.7) are commonly

referred to as the von Karman nonlinear (finite) strains.

2.3 Aerodynamic Pressure Function
The virtual work integral involving the surface stress vector is evaluated using the unsteady
full third-order piston theory aerodynamics [6] to develop the acrodynamic loads on the upper
surface of the panel. Again, this relates the local point function pressure generated by the
panel’s motion to the local normal component of the flow velocity. Thus, the aerodynamic

pressure loading as given by this theory is

1 1 2
00 (L, 1, )

- _2_q —l-w +w,z +
p pme V st 'z V

3
L ; 1) 2 (%w,t +w,x) ] (2.8)
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The first two terms in the bracket in Eq. (2.8) constitutes what is commonly referred to as
the first-order piston theory aerodynamics and Eq. (2.8) without the cubic term represents the
second-order piston theory aerodynamics.

In reference [9], McIntosh uses a modified form of Eq. (2.8). In his work, the w,; in the
cubed bracket is neglected. Since a complete derivation (see Appendix A) of the third-order
piston aerodynamic theory would include this term, and since the additional complications to
include this term in the finite element formulation is minimal, this term is retained in this study.
Retaining this term will allow for a full evaluation of it’s influence on the panel’s response.

Piston, Ackeret, and other quasi-steady aerodynamic theories have been shown [14] to give
good estimates of the panel thickness required to prevent panel flutter. However, all of the
references in the literature do strongly suggest that these theories are only valid for Mach
number ranges greater than 1.6-2.0. Generally, this is taken to be greater than v/2. Since
this study is concerned with the panel flutter phenomena at high supersonic (M = 3 -- 5) to

hypersonic (M > 5) speeds, piston theory is adequate for computational purposes.

2.4 Element Representation
2.4.1 Two-Dimensional Isotropic Panel
Using Egs. (2.2), (2.3), and (2.8) in (2.1) results in the following expression for Hamilton’s

principle for an element of length a,:

Ge

/ph(u tt Ou + w,y Sw) dz

ae 3
A_}/(_w, bt 0t (R ) e (L, )6w &
0

4 |4 12
F Eh 1
+ v | ha 6“';&: +_w:g 6’11.,2; +u:x W,z 611),3;
/ (1-v2) 2

1 h2
+2w,,_. bw,z + g Wz= dw,zz ) dzx (2.9)

The displacement functions for the two-dimensional plate are chosen as

w(z,t) = [p1 ¢2 ¢3 da]{wy}
(2.10)
u(z,t) = [ip1 2 3 pal{wm}
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where {wy} and {wn} are the element nodal displacement quantities at the two ends of the

plate, see Fig. 2.3,

wy uy
d

{wy=3 o {wm}=1 o (2.11)
L) €

The subscripts 1 and 2 refer to the two end nodes of the element and ¢; and @;, where j =1

to 4, are the cubic interpolation functions defined as

$1=p1 =1 -3(z/ac)® +2(z/ac)®
¢2 =2 = [1 - 2a/ac) + (&/ac)’]
¢3 = 3 = 3(s/ac)? - 2(z/ac)’

¢4 = pa = z[(z/ac) - (z/ac)]

(2.12)

Using Eq. (2.10) in Eq. (2.9), dividing by a3/D, letting t = 7/w, and = = af (7 and £
are nondimensional time and position, respectively), A = 2¢ga3/M D (nondimensional dynamic
pressure), p = pga/ph (nondimensional mass parameter); r = h/a, M = Mach number,
D = Eh3/12(1 — v?) and assuming constant properties over an element, the nondimensional
element mass, stiffness, and aerodynamic influence matrices can be developed and written in
terms of the interpolation functions and nodal quantities. Assembling the mass, stiffness, and

aerodynamic influence matrices, the equations of mmotion for an element become

[lmf [0] ] {“’f} . [([9]+[91t]+[92ft]+[§2t]) [0]] {wf}
[0 [mm]]| | dm (0] [0] |

W

N [ ([a] + [al¢] + [alf] + [a2] + [a2¢]) [0]] { wyg } N [[kss] (0] ] {wf}
I [0] 0] (wm 0] [kmml) Lwm
[ [k1gy] [klfm]] { wyg } [[kaf] [0]] { wyg } _ { fr }
lktmg © Nonf L 0 0 Vom) = Ut (215)

where {f} is the internal element equilibrium forces, [k] is the linear elastic stiffness matrix,
[k1] and [k2] are nonlinear stiffness matrices which depend linearly and quadratically upon

displacements, respectively, and are defined as follows.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mass
ae/a

msl= [ {s}é) &€
0
ac/a

mml = [ (oMl d

0

stiffness

ae/a

byl = [ {6"Y" d
0

ac/a
b} = 12152 [ 0/} ¢
0

ac/a

imgd =6/ [ (55) to'He)
0

ae/a

il =6/r [ (55) {8}
0
acfa “

kgl =6/r [ (55) (#)o)

0

a/a
[k2f5] = 6 / (%)2{¢'}[¢'ld£

0

aerodynamic influence

ae/a

=2 [ {eHe) e
0
ac/a

1= [ (eHe) e

0

<

c/a
0 -1 () (8) [ (5) e

Ge/a
[92t]=-7—1-g—1(M§)2\/-}(%)3 0/ (9{-)2{¢}[¢] dé

16

(2.14)

(2.14a)

(2.14b)

(2.15)

(2.15a)

(2.15b)

(2.15¢)

(2.15d)

(2.15¢)

(2.15f)

(2.16)

(2.16a)
(2.16b)
(2.16¢)

(2.16d)
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a./a

[ngtl—lf—l-(MZf(ﬁ) / (Z557) (6hel d (2:16¢)
ac/a
d =152 (m2) A () [ () eno ae (216)
0
'y+1 h e Wye ’
11 = 1522 (1) 0[ (%) (o119 a2 (2.16¢)
a./a
[a2ft]=—+—1(M§)2 2($5) / (Z537) ohe a¢ (2.16h)
0
Ge/a
la2/] = 7+1 (M%)2 0/ (%)2{45}[45’]«16 (2.16i)

where {8} = [4I7, {¢} = [T, and (/ = %, 0= %% 0= Or=F

The variational principle in Eq. (2.1) represents a finite element approach to study the limit-
cycle oscillations of a two-dimensional panel at hypersonic speeds. Unlike first-order piston
theory aerodynamics which will produce two linear aerodynamic influence matrices, [g] and [a},
the third-order piston theory aerodynamics yields, in addition to the same two linear matrices,
seven nonlinear aerodynamic influence matrices, [gls], [92¢], (927, [als], [aly], [a2fs], and
[a2f], where the aerodynamic matrices are functions of the system aerodynamic pé.ra.meters,
in particular the dynamic pressure, A\. The aerodynamic influence matrices [g] and [a] are
linear, whereas [gl¢], [al¢], and [alf] depend linearly, denoted with 1, upon the displacements,
denoted with subscript f, or the time derivative of the displacements (generalized velocities),
denoted with subscript ¢. The other four matrices, [g2f], [92¢], [a2:], and [a2f] are quadratic,
denoted with 2, in displacement, subscript f, and/or generalized velocities, subscript ¢. The
symmetry in the first-order nonlinear stiffness matrix, [k1], has been preserved at the expense
of transferring the nonlinearity on w,¢ to u,¢ by splitting u,z w,e Sw, into two equal parts
and producing the [k1yf] term. Since the element matrices associated with the aerodynamic
damping, [g], are similar in form to [m] they are symmetrical; however, since the acrodynamic

influence [a] involves a spatial derivative, the resulting element matrices are skew-symmetric.
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2.4.2 Three-Dimensional Rectangular Panel

Since a typical four-node plate element has considerable more degrees of freedom per node,
the derivation for a general rectangular plate finite element is easier to conduct using matrix
notation. The derivation starts by considering the terms in Eq. (2.1) separately.

The first term to consider is the variation of the internal strain energy, 6U, (fourth term in

Eq. (2.1)). This term, in matrix notation, has the following form:
§U = / (6T {o} dV (2.17)
v

where {¢} and {c} are defined in Eq. (2.4) and V represents the volume of the element. Using
Eq. (2.4) for {o} in Eq. (2.17), then Eq. (2.17) can be written as

§U = / (66T [0){e} avV (2.18)
vV

For a general plate element undergoing both bending and extension, the complete strain,
for any point through the thickness located at coordinate 2, is composed of two parts. The first
part is due to stretching the midsurface, and the second part is due to the change in curvature,

{x}, during bending. Thus, using Kirchhoff hypothesis, the total strain can be written as
€x Kx
{e}={e}+z{s}={ ey p+24 ry (2.19)
€xy Kzxy
If the relationships between the strain-displacement in Eq. (2.7) are written as a vector, then

the membrane strain, {e}, takes on the form

u;:c +%m7§:
{e}= Uy +%w,,2/ (2.20)

Uy +V,z +W,z Wy

The membrane strains in Eq. (2.20) can also be written as

{e} = {em} + {ems} (2.21)

where {e;,} is the linear portion of the membrane strain and {e,;;} is the nonlinear, von

Karman, membrane-bending coupling strains. The curvatures written in terms of the transverse
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displacement, w, become

~W,rz

{c} =1 ~wyy (2.22)
—2w,a;y

Using Eq. (2.19) in Eq. (2.18) and expanding, then the internal strain energy can be written

8U = f [{6e}[@He} + 2{8e}T1Qlx} + 2{6m}T[QMe} + 22 {6} IQURY] aV  (223)
v

Integrating Eq. (2.23) through the thickness, h, and using the definition for the classical

laminated stiffnesses of

+%

w=/@a (2.24)
-4
+§

[B] = / 2[Q) dz (2.25)
4
+§

[D] = / 2(0) dz (2.26)
-z

yields,
U= / [{e} [4){e} + (6e}T [BHx} + {6x}T (Bl{e} + {6x)7 (D]} dS (227)
S

The [A], [B], and [D] matrices are the classical laminate extensional, bending-extensional, and
bending stiffnesses, respectively.

Proceeding from this point, the displacements in Egs. (2.20) ard (2.22) are approximated
over a typical element using interpolation functions, see Appendix B for derivation and

definitions, and nodal displacement quantities as follows:
w = [pu]{Aw}
u=[pu}{Au} (2.28)

v = [¢o]{Av}

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Using the Egs. (2.2) and (2.22), the curvatures and midsurface strains, in the von Karman
sense, are related to the nodal displacements as

~Wyzz ~[bw)szz
_2[¢w]1:cy

—2w,zy

and for {e} = {em} + {ems}

[d’u] "> 0
{em} = [ 0 [¢v1,y] {{A”}}

Av
[¢u] "y [¢U] 'z { }
(2.30)

1% 0 ol
=3 “””} ek ] aw
Wy Wy

Similarly, the variation of the curvatures and midsurface strains are related to the nodal

displacements as

—[¢w]1$1
{6} = [ ~[bulwy
"2[¢w]’xy

{6Aw) (2.31)

and for {ée} = {6em} + {6emp}

[¢u] 4 0
{Bem} = [ 0 [¢vl,y} {
[¢u] W [¢v] 'z

- w’z 0 [¢w],z
ems} = [ ) w’”] [[¢wl,y

'w»y W,z

!

(2.32)
] {6Aw}

The following notation is adopted to further simplify the matrix equations:

_[qS‘UJ])ZIZZ .
[Pu] = [ ~[bwly ] (2.33)
"2[¢w],zy

[¢u] T 0
[Pu] = l: 0 [¢v],y:| (2.34)
[¢u] W [¢u];z

_ [¢w] "<z
Gl = [[«ﬁw],y]
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w,e O
(6] = [ 0 w,y] (2.36)

W,y W
Using the definitions, Eqgs. (2.33)—(2.36) in Egs. (2.29)-(2.32), then the results can be used
in the variation of the internal strain energy, 6U. Since there are four parts to Eq. (2.27), each
term will be expanded separately. The first term, {6e}7 [A]{e}, when expanded out consists of

the following four parts:

{Bem )T A]{em} = (60 s80PTLAYP { R4 } (2:37)
(e}l {ems} = 3155u AP IAIOICHH Aw) (2.38)
(Bem) (Al em} = BAUICHT AT AP { R4 } (2:39)
ems) (A} ems} = 55A0ICAT BT (A]Col{Aw) (2.40)

The second term in Eq. (2.27), {6e}7 [B]{«}, when expanded out generates two additional

terms due to the unsymmetrical nature of the laminate. These terms are
{8em}" [Bl{x} = [6Au 6A0][P)" [B][Pul{Aw} (2.41)

{bemp}T[Bl{x} = [6Aw][Co)T[0]T (B][Pu){Aw} (2.42)

The third term, like the second, yields two more terms as a result of the unsymmetrical

nature of the laminate. These terms are
{80)7[Bl{em} = 0ullPT(BYR { 2 (243)
(6YT[Bl{ems} = 5lAulPuTBIONCo{Aw) (244
The final term in Eq. (2.27) is the standard, symmetric, pure bending expression,
16Y7 D)} = 58u][PulT DI[Pu]{ A} (2.45)

Equations (2.37)—(2.45) represent the full nonlinear, in the von Karman sense, internal strain
energy for the most general composite (anisotropic) panel. A closer inspection of Egs. (2.37)-
(2.45) reveals that the nine terms will not yield a symmetrical system. However, the system

can be made symmetric (although not a requirement since the aerodynamic system is skewed
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symmetric) by using a procedure similar to that given in reference [52] where it is noted that
the mid-plane force is {N} = [A]({em} + {ems}) + [Bl{x}.
Rewriting Eq. (2.39) as the sum of two equal parts as follows

(Bem) T [Alfem} = S168ulCHT AR { 4% } + J6aullCa O AR { 32} (240

is equivalent to Eq. (2.39).
Next, working with the last term in Eq. (2.46)

StoaulcaTor AP { u } (247)
then Eq. (2.47) can be rewritten as
S168u][CoIT 17 (N} (248)

where
A
(N4} = Alfem} = (1P { a2 } (2.9
which represents a portion of the midsurface force.

Using the transpose of Eq. (2.36),

[T = [w’z 0 w’y] (2.50)

0 wy ws

and noting that

Npg
{Ng} =14 Ny (2.51)
Nazy
The product of the two terms, Eqgs. (2.50) and (2.51),
N g w,z +N gz,
(617 {Na} = [ Aot A "] (252)
Nayw,y +Ngzyw,z

is the last two terms in Eq. (2.48). Equation (2.52) can also be factored and written as the

product of two new matrices as

Ny N
Az Ay {“”z } (2.53)
NpzyNpy | (W
Thus, transforming the {N4} vector, Eq. (2.51), to a nonlinear stiffness denoted as
o vy =l {2} (259)
W
22
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Equation (2.54) can also be written as

[N4](Col{Aw} (2.55)
To summarize,
O AP { b } = INAlICol{Aw) (2:56)
Thus, transforming the nonlinearity from w to u and v. Using Eq. (2.55), then Eq. (2.48)
becomes
S16Au][CaIT [N ][ Col{ Aw) (257)
which is now symmetric.

Similarly, Eq. (2.42) and Eq. (2.44) can be summed and factored to produce a symmetric

form as follows:
u] (51T BIIP] + SICOT O BIIPL] + HIPTIBIOICH) (Au} (259
Eq. (2.58) can be rewritten using the following transformation:
(Np} = [Bl[Pul{Au} (259

which represents the force resulting from the bending-extension coupling of the laminate.
Using Eq. (2.50) and noting that

Np;
{Np} = Np, (2.60)
NB:cy

The product of these two terms, [0]T[B], is as follows:

NBzw,z +Npzyw, N N,
[ BzW,x Bzy y] - Bz {¥Bzy {uh:z } = [NB] {w,x } (2.61)
NByw’!/ +NBzywm NBzy NBy W,y Wyy

Equation (2.61) can also be written as
[NB][Col{Aw} (2.62)
To summarize, using Eq. (2.62), then Eq. (2.58) becomes

S168u] (1T INB1ICol + (CoT O (BIIP] + [PuT(BIAICH]) (A} (263
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Thus, transforming the nonlinearity in w to a symmetric form.
Integrating Eqs. (2.37), (2.38), (2.40), (2.41), (2.43), (2.45), (2.46), (2.63), and (2.57) for
the second half of (2.46) over the area of the element, S, and making the usual arguments about

the variation being arbitrary leads to the following definition for the element stiffness matrices.

stiffness (2.64)
lbrm] = [ (PATA[PJdS (2.640)
S
sl = 3 [(RITIA)0IColds (2.645)
s
1 T T
k257 = 5 [lCa" O AllliCaldS (2.64c)
)
kams] = [(RTIBI(PdS - (264d)
S
kml = [PulTBIIP.IdS (2.64¢)
S
ksl = [P IDIPuldS (2.641)
S

ksl = 3 [ (CoTINIICH + (CoT BT (BIIPu] + [P IBIOICH) 4 (2648)

S
1 T T
kgl = 5 [1COT BT AIIPIdS (2640)
kgl = 5 [1CoTINAlICAdS (2.641)
S

The standard linear stiffnesses are given by Eqs. (2.64a) and (2.64f) while the linear
stiffnesses given in Egs. (2.64d) and (2.64e) are a result of the unsymmetrically laminated plate
considerations. First-order nonlinear stiffnesses, dependent on element displacements to the
first power, are accounted for in Egs. (2.64b), (2.64g), (2.64h), and (2.64i). Equation (2.64g) is
due to the unsymmetrical laminate and large-amplitude deflections. The second-order element
stiffness term is given by Eq. (2.64c). The subscript “B” is used to denote those terms that

depend upon or are a result of the bending-extension coupling. The number denotes the order of
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the nonlinearity while the “f” or “m” denotes the type, e.g., “ls,” implies first-order nonlinear
bending-membrane.
Using the notation,
Aw w
Au § = { f } (2.65)
Au Wm
and Eqs. (2.64) results in the following matrix equation for the rectangular plate element:
([ [ksy [kam]] N [[leff] [0]] N [ [k155] [kljm]] N [[szf] [0 D { wy }
[kBmfl  [kmm] o] [0 klmg]  [0] 0] [0/ lwm
(2.66)
Since the virtual work of the aerodynamic forces are independent of the midsurface
displacements, the aerodynamic influence matrices are of the same form as was presented for

the two-dimensional panel. Thus, the aerodynamic influence matrices for a rectangular plate

element with the flow in the direction of the positive z coordinate axis are

serodynamic influence (2.67)
ol =22 [{9ulldulcds (2.67a)
S
=2 / {Bu}lpulds (26b)

o1 = L2250 / (w){$u}HsuldS (2:670)

2 = L2 IC e (267)

o2y = S0P [wmosaeis (2.7

a1 = 2021 S/ (w4 ) boladS (2.676)

a1 = L2X0) S/ (w:z {bu}lbuls dS (267¢)

2 = LY [t} 00 bl dS (2.670)
5

o27) = LY fa, Vgl ds (26)
S 25
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where ()2 = 99, ()it = %2, {6u} = [$u]T, and [$u] is defined in Eq. (2.28).

The notation used in Eqs. (2.67) is similar to that used for the two-dimensional panel,
Egs. (2.16). These three-dimensional panel equations are the dimensional counter parts to
the nondimensional equations for a two-dimensional panel. The three-dimensional equations
are presented in the dimensional form to provide a direct correlation between the physical
parameters and the nondimensional parameters with their associated term in the governing
equation. Since the influence of the aerodynamic terms are the same for either two-dimensional
or three-dimensional panels and only the elementary structure, 2-D or 3-D, is different, the
same notation should be clear from the application and should not present any confusion.

The last term in Eq. (2.1) to be evaluated is the virtual work of the inertial forces.
Integrating the virtual work due to the inertial forces, including both transverse and midsurface

accelerations, results in the following expression:
ph / (w,zt Sw + u,gt 6u + vyt 6v)dS (2.68)
S

Next, using Eqs. (2.28) in Eq. (2.68) results in the following mass matrix for a rectangular

plate element.

mass

mg [0 (0]
ml=| 0] [m [0 |= [[’[';f] [7511] (2.69)
o [0 [ml

where
gl = oh [{guHidulds
S
[mu] = ph f {du}puldS (2.70)
S

] = ph [ {60}8:1dS
S
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Assembling the mass Eq. (2.69), stiffness Eq. (2.64), and aerodynamic influence Eq. (2.67)
matrices, the equation of motion for an anisotropic plate element becomes

[[mf] (0] ] { Wy } + [({y] + lgle] + [927e] + [924]) [0]] {wf }

[0  [mm]] \ im [0 [0}

N [ ([a] + [als] + [alf] + [a24:] + [a2f]) [0]] { wy } N [ (kssl [kam]] { wy }
A [0] [0] Wm [kBmf] [kmm] Wm
[ [k1
+ [ ff] [klfm]] {Wf}+ [[klgff] [0]] {Wf}
L T 1) Wm 0] [0] {wm
(k275 [O1] fwr) [ fy
o [01] {wm } - { o } &1

where {f} is the internal element equilibrium forces, [k] is the linear elastic stiffness matrix,
and [k1] and [k2] are nonlinear stiffness matrices which depend linearly and quadratically upon
displacements, respectively.

The variation principle in Eq. (2.1) represents a finite element approach to study the limit-
cycle oscillations of three-dimensional panels at hypersonic speeds.t As was the case for the
two-dimensional panel, the third-order piston theory aerodynamics for the three-dimensional
case will produce two linear aerodynamic influence matrices, [g] and [a], and seven nonlinear
aerodynamic influence matrices, [gli], (924}, [927], [ald], [alf], [02f,], and [a2f], where the
aerodynamic matrices are functions of the system aerodynamic parameters, in particular the
dynamic pressure, A\. The aerodynamic influence matrices [g] and [a] are linear, whereas
[91¢), [al¢], and [alf] depend linearly, denoted with 1, upon the displacements, denoted with
subscript f, and/or the time derivative of the displacements (generalized velocities), denoted
with subscript, ¢. The other four matrices, [92f,], [92¢], [e2f;], and [a2f], are quadratic, denoted
with 2, in displacement and/or generalized velocities. The symmetry in the first-order nonlinear
stiffness matrix has been preserved at the expense of transferring the nonlinearity [k1 jm] into -
two equal parts and producing the [k1] term. A similar transformation was used in developing
the [klpys] term. As was the case with the two-dimensional aerodynamic matrices, the
aerodynamic damping matrices, [g], are symmetrical while the aerodynamic influence matrices,

[a], are skew-symmetric.
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Fig. 2.1 Two-Dimensional Panel Geometry.
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Fig. 2.2 Three-Dimensional Panel Geometry.
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Fig. 2.3 Nodal Displacement Quantities for & Two-Dimensional Panel.
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Chapter 3

SYSTEM FINITE ELEMENT FORMULATION AND SOLUTION
PROCEDURE
In this chapter, a detailed description, for both two- and three-dimensional panels, of the
assembly procedure, solution procedure and computational methods that were developed to
solve the large-amplitude free vibration and large-amplitude panel flutter, using third-order
piston aerodynamic theory, equations is presented. Each of the problems is nonlinear, and
therefore, must be solved using an iterative solution procedure that is terminated when the

appropriated convergence criteria are satisfied.

3.1 System Finite Element Formulation

By sub-dividing the problem domain into a finite number of discrete elements, a subsystem
of elements for the two-dimensional panel Eq. (2.13) or Eq. (2.71) for the three-dimensional
panel can be assembled. After assembly of the elements, using the methods of references 53]
and [54], the boundary conditions are imposed on the assembled system equation using the
method outlined by Reddy [55]. The constrained system finite element equation for both two-
and three-dimensional panels are then available for an iterative solution.

After assembling the individual finite elements for the entire system and applying the
kinematic boundary conditions (e.g., for simple, in-plane immovable supports; u(0) = u(a)
= w(0) = w(a) = 0 for the two-dimensional panel and u(0,y) = u(a,y) = v(x,0) = v(x,b) =
w(0,y) = w(a,y) = w(x,0) = w(x,b) = 0 for the three-dimensional panel), the nonlinear equation
of motion for the coupled (bending/membrane) system represents a finite element approach for
solving the two- or three-dimensional panel flutter problem. The convention that upper case
matrix notation pertains to the assembled structure is used in this study to parallel the system

and element formulations.
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3.1.1 Two-Dimensional Isotropic Panel

The constrained system equations for a two-dimensional panel have the following form:

[[Mf] [0] ] {Wf}+[([G']-l—[Glt]+[G2t]+[G2ﬂ]) [o]] {wf}
0] [Mwm]] W, [0] 0] LW,

N [([A] + [Alg] + [Alg] + [A2y] + [A2]) [0]] { Wy } N [[Kff] [0] ] { Wy }

[0] 0 (Wn 0] [Kmm]] |Wn
[K1fg] [Klpm]] [ W5 (K255 O] [Wr] [0
+[[K1mf] 0 ]{Wm}+[ 0 mHWm}'{“} &y
where
Wy
{Wm} (32)

are the constrained nodal displacements of the assembled system. By neglecting the in-plane
mass for the lower frequencies, Eq. (3.1) can be partitioned and written as two separate
equations. Solving the partitioned equations for {Wy,} leads to the following reduced system

equation in terms of the transverse displacement quantities {W;}

[M71{Ws} + ([G] + [GLe] + [G2:] + [G2p4)) {Wy}
+ (K171 + (K157 = K1 gl (K] ™ [KLmg] + [K247]) (W)}

([A] + [ALd] + [ALf][A2f:] + [A2]) {W} = {0} (3.3)

where the relationship

{Win} = ~[Kmnm] K1 {Wy} (3.4)

was used in deriving Eq. (3.3) by neglecting the midplane mass, [My], in Eq. (3.1). This
equation, as written, is a damped vibration problem in the configuration space; and as such,
does not lend itself to standard eigenvalue solution algorithms. Thus, the approach to be
adopted transforms the problem from the configuration space to a state space, which results in
a more standard form of the eigenvalue problem. By making the transformation to the state

space, the governing matrix equation, Eq. (3.3), becomes

) 0] (W) [16] (K] [W)
[[01 m]{w}*[[-n [01]{W}—{°} =
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where {W} = {Wr}, [I] is an identity matrix, and
[M] = [My] (3.6)

[G] = [G] + [G14] + [G2] + [G2f:] @7

(K] = [Kff] + [K1sf] = (K1) [Kmm) (K 1mg] + [K255)

+ [A] + [Alg] + [Alf] + [A27] + [A2f] (3.8)

3.1.2 Three-Dimensional Composite Rectangular Panel
The constrained system equation for the three-dimensional rectangular panels has the
following form:

l[Mf [0] ] { Wy } [([G'] + (G4 + (G2 + [G25]) [0]] { Wy }
N .
0 [Mm]] (W [0] o] LW,

. [([A] + [ALg] + [ALf] + [A27] + [A2¢]) [0]] { Wy

A (0] 0] { W

[ [Kyy] [KBfm]] { Wy } N [[Klff] K 1fm]] { Wy }
-[KBmf] [Kmm] Wm [K 1mf] [0] W

-[KIBff] [0} Wy [K2ff] [0] Wy _ 0
| o mHWm}*[ 0 [01]{%.}'{0} 39)

Wy
{ W } (3.10)

are the constrained nodal displacements of the assembled three-dimensional system.

where

The approach for the three-dimensional panel differs slightly at this point. For the two-
dimensional panel, the number of degrees-of-freedom associated with the midplane inertia
were few and only associated with one direction. Thus, assembling Eq. (3.4) with a matrix
inversion at each iteration did not consume an appreciable amount of computational time as
compared with that for solving a larger eigenvalue problem. However, the computational time
needed to solve a similar three-dimensional equation, Eq. (3.4), at each iteration did present a

severe computational penalty when compared to solving a larger eigensystem. Therefore, it was
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opted to solve the larger eigensystem and not to condense out the midplane degrees-of-freedom.
This approach is considered more complete than the previous assumption—that the midplane
mass is negligible. This approach also provides the results necessary to validate the previous
assumption. For all of the cases considered in this study, the eigenvalues associated with the
midplane degrees-of-freedom were at least two orders of magnitude higher than the lowest full
system eigenvalue (i.e., 102 versus 104). The lowest full system eigenvalue was always associated
with the transverse degrees-of-freedom.

Similar to the two-dimensional case, Eq. (3.9), as written, is a damped vibration problem
in the configuration space; and as such, does not conform to standard eigenvalue solution
algorithms. Thus, the same approach of transforming the problem from the configuration space
to a state space is used. By making the transformation to the state space, the governing matrix
equation, Eq. (3.9), becomes

[M] [0]] (W @ K| [w) _
[[01 [n]{w}+[[-n {01]{W}'{°} @1
where
Mg [0]
[M]——[ 0l [Mm]] (3.12)
_[(G1+[61] + [G24] + [G2fe]) (0]
6] = [ ) [0]] (319)
where
(K] = [(w + 1AL + [A17] + [A2g] + [424) [01] [[Km [Km]]
[0] (0] [KBmf] [Kmm]
[Kigs] [K 1fm]] [[K syl [0]] [[Ksz] [0]]
" [[Klmf] o [Tl o ol e o (3.14) -
where
{w}= {::,,f } (3.15)
n={ir}
{W=4q . (3.16)
Wn

and [I] is again the identity matrix.
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3.2 Linearizing Procedure
The solution procedure for both the two- and three-dimensional panel is basically the same.
This is readily seen by comparing the homogeneous Eqs. (3.5) and (3.11). Thus, for this reason
the solution procedure is developed for a problem of the form of either Eq. (3.5) or Eq. (3.11),
and where there are specific differences, these differences are pointed out.

The solution to the homogeneous problem is sought in the form of

{W}=a{¢1} B (3.17)
174 Py

where {®;} and {®2} are complex eigenvectors that are arranged as a single column vector,
Q = (@ + iw) is the complex eigenvalue, and ¢ is a nonzero (scalar) constant displacement
amplitude. Substituting the assumed response into Eq. (3.5) or Eq. (3.11) results in the following

eigenvalue problem:

5 [M] (0] [} [K] 3, o
(9[ (0] [1]]+[[—1] [0]]){4»2} {0} (3.18)

By expressing et asa complex quantity in the Euler form and requiring both coefficients of

sin(wt) and cos(wt) to vanish, then Eq. (3.18) can be written as two separate equations

e (o[ [01] [[G] [Kl]){crl}cow _
(”[ o mtlen o)) e = (619
N ) O] (6 ) fE)
e (o [ ) {a) meom@ em

Since ¢ is nonzero, Eq. (3.5) or Eq. (3.11) is for the constrained system, and the solution
sought is for all times greater than zero, both Egs. (3.19) and (3.20) represent the same
eigenvalue problem. To solve Eq. (3.19) or (3.20), the nonlinear matrices in Eq. (3.1) or
Eq. (3.9) need to be evaluated. Also, since all of the system quantities used in developing these
equations are real, it must be concluded that the nodal response quantities must also be real [1).
As is generally the case with most nonlinear problems, numerous methodologies are available
to obtain linearized solutions. Omne focus of this study has been centered around linearizing
the resulting nonlinear eigenvalues problem of Eq. (3.19) or (3.20) for synchronous motions.
This can be accomplished by linearizing either equation and employing an iterative solution
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procedure. The field expressions for the transverse panel displacement, velocity, and slope are
given in Eqgs. (2.10) or (2.28). All of these quantities can be approximated from Eq. (3.17) by
normalizing the eigenvector as follows and recognizing that {W} is a real quantity, and as such
take only the real part of the normalized Eq. (3.17).

W et (1] cos(8- )
{ w } ~ (@2l { 2] cos(B— Bi) } cos(wt) (3:21)

The quantity |($2)| is the magnitude of the largest transverse displacement component
of the eignevector that corresponds to {W}, and Sy is the corresponding phase angle. Next,
denote ¢ = & €* as the damped amplitude. Thus, it is clear from Eq. (3.21) that the sign of
the real part of the eigenvalue controls the stability of the solution. The solution is stable for
all o that are less than zero. For a equal to zero, then ¢ equals ¢ and the resulting solution

corresponds to that of a limit-cycle oscillation. By letting

B)_ 1 |®1] cos(B — Br)
{ B, } (o)l { |®2] cos(8 — B) } (3.22)
then Eq. (3.21) becomes,
w 3,
{ w } =€ { &y } cos(wt) (3.23)

Using Eqs. (3.22), (2.10), and (2.28) the (scalar magnitude) transverse velocities and slopes

become

two-dimensional panel

(@, = 4] {81}, os(ot)
w(z,t),e = [¢'] {52}]. cos(wt)

u(z, t)af = [GP'] {(&)2)",}] cos(wt)

(3.24)
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three-dimensional panel

w(z, y, )t = [$u] {$17} ; cos(wt)
(2,9, ) = [buliz {Bas}; cos(wt)
w(z,9,£)y = [$uly { By} cos(wt)
w2, ¥, t),z = [$ul.z {@2m}; cos(wt)
w(z, ¥, t).y = [bul.y {B2m} ; cos(wt)
v(@, Y, )z = [$o],2 {B2m} ; cos(wt)

v(z,y, t)ay = [¢v]1y {§2m }j cos(“’t)

In Eqgs. (3.24) and Egs. (3.25), the column vectors {®;} ; and {®2} ; contain the appropriate

(3.25)

global eigenvector quantities that correspond to the particular j-th finite element, and for the
two-dimensional case, the column vector {(52) m} j contains the appropriate membrane global
eigenvector using Eq. (3.4). The three-dimensional vector {®; f} j uses the subscript “f” or “m”
to denote the appropriate bending or membrane quantity that correspond to the particular j-th
finite element, respectively. Thus, with Eqs. (3.24) or (3.25), the nonlinear terms in Eq. (3.19)
can be evaluated. By making use of the following identities

1.1 2
cos?(wt) = (5 + 2 cos(2wt)) cos(wt) (3.26)

cosd(wt) = %(3 cos(wt) + cos(3wt))
Neglecting the second and third harmonics (see Appendix C), the following approximations
may be used to linearize Eq. (3.19):

cos?(wt) = ‘/Ticos(wt)
(3.27)

cosd(wt) ~ %cos(wt)

The various linearizing methods, [36]-{43], that have been used in the past have bounded
these values. From Eq. (3.26), the time functions have an absolute value range from zero to one.
The lower value of zero will reduce the nonlinear problem to a linear one while the upper limit
of one would calculate the nonlinear stiffness based on the maximum deflected configuration.
The lower (linear) limit as discussed in the introduction merely defines the flutter boundary as

an instability. The upper limit defines an over-stiff system by assuming the maximum value
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of the developed midsurface force to occur over the entire cycle. Physically, the actual value

starts at zero then progresses to the maximum value of one then back to zero over a half-cycle

and then repeated through negative values. Thus, neglecting the second and third harmonics

in Eq. (3.27) will predict a solution that is clearly bounded between the physical extremes. In

fact, the value, zéi, is exactly the root-mean-square value of a harmonic function over its period,

and % is in the same range. A similar approach may be used to linearize Eq. (3.20) and will

result in the same eigenvalue problem.

3.2.1 Linearizing Method for Two-Dimensional Panel

Using Eq. (3.27) and the nonlinear Egs. (2.15) and (2.16) for the two-dimensional panel,

results in the following element equations:

stiffness

[k frm] = 7 [k pm] cos(wt)
(klmg] = ’}%[klm ] cos(wt)
[klff] = %[klff] cos(wt)

(k255] = (%)2 [k24f] cos?(wt)

aerodynamic influence

lo1e] = £l cos(wt)
(920 = (£)" lgmr cos?(wt)
lo27) = (3’ lgage) cos?(t)
[alf] = -}“;[au] cos(wt)
la1] = Zla1s] cos(wt)

c

[a2f] = (ﬁ) 2 (a2 cos (wt)

[a2f] = (%) 2 [a2y] cos?(wt)
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(3.28)

(3.282)
(3.28b)
(3.28¢)

(3.28d)

(3.29)

(3.29a)
(3.29b)
(3.29¢)
(3.29d)
(3.29)
(3.29f)

(3.29g)
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where the linearized element stiffness and aerodynamic influence matrices are defined to be

linearized stiffness (3.30)
ae/a
amid=6/r [ (61{82};) {0 Hi¢)de (3.308)
0
aefa
Peagml =6/r [ (1#1482);) (#Hielie (3.300)
0
acfa
tag=6/r [ (#1{@2)n};) (#}0)ee (3:300)
0
ac/a 0
karl=6 [ (#1{82};) {0'Helee (3:30d)
0
linearized aerodynamic influence (3.31) .
ae/a
g = 22 (M2) (&) [ (191481);) tebionae (3.31a)
0
ac/a

lszftl=#(M§)2(—]{‘7) [ (11821;) (141481};) {ohieles (3.31b)
0

ac/a

920 = ZE2 (32 /5 (5)° 0/ (141{81},)" toHade (331c)
1(, h le
faad = 152 (a3 A () 0 (14 {81};) {8} (3314)
ac/a

faas] = L2 (ur7) 0/ (181482}, (ohige (331¢)
ac/a

aapd = T2 (2) A(B) [ (#113a);) (01(81)) 91 310
0

jaag] = 20 (w2 0/ (1{81),)" (ohisae (3.31¢)
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3.2.2 Linearizing Method for Three-Dimensional Rectangular Panel
Using Eq. (3.27) and the nonlinear Eqs. (2.64) and (2.67) for the three-dimensional panel

results in the following element equations:

stiffness (3.32)
(k1 frm] = clka ) cos(wt) (3.322)
[Klng] = clk1my] cos(wt) (3.32b)
[k174] = clka ] cos(wt) (3.32c)
[k2f5] = c[kay 5] cos?(wt) (3.32d)
aerodynamic influence (3.33)
[g1¢] = clgay] cos(wt) (3.33a)
[92:] = 2lg2,] cos?(wt) (3.33b)
[92¢] = g2 ;] cos?(wt) (3.33¢)
[a1¢] = clax] cos(wt) (3.33d)
lal4] = cla1] cos(wt) (3.33¢) -
[a2f,] = *[az 4] cos?(wt) (3.33f)
[a2f] = *[az] cos?(wt) (3.33g)

The nonlinear stiffness and aerodynamic influence matrices are defined as follows using the

linearized definitions of Eqs. (2.36), (2.49), (2.51), (2.59), and (2.60):

[¢w]»:c {éZf}j 0

[6] = 0 [bulw {P2r}; (3.34)
[d’w]’y {‘321'}]' [¢w],:c {‘i’Zf}j
{NA} = [A] [Pu] {‘i’Zm}j (3.35)

which represents the linearized midsurface force.
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Noting that

Nz
{Na} = { Nay } (3.36)
Nazy
then the linearized [N4], [M4], can be defined as
Naz  Nazy
=[N 3.37
[ Nizy Ny ] (V4] (3.37)

Similarly, the linearized [N], [Mp], is defined as

{N8} = [BI[Pu] {®2s} (3.38)

which represents the linearized midsurface force due to the bending-extension coupling.

Noting that
NBz
{NB} = { Npy } (3.39)
NBgy
then the linearized form becomes
N Bz NBzy]
=[N : 3.40
[ Niey Ny Va] (3.40)
linearized stiffness (3.41)
Pimsl = [ IPITIAIIICHdS (3.412)
S
kagl=5 [ (CoTIOF4)elColds (3.41b)
S

asrl =5 [ (I WBIICo + ColT 101 [Bl[Pu] + [PuTIBIIOIICo]) dS  (3.410)

S
1 T
kagml = 5 [ (CATOIAIPdS (3414)
S
1 T
il =3 [ GO WaAlICHS (3.41¢)
S
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linearized aerodynamic influence (3.42)

loz) = 4251 S/ (14l {817}, {#uHlulds (3.42)
lga) = L2 J (166) {817},)” {9u}dulas (3.425)
lga g = LM S/ (IBule (Bo1};) (161 {B1s),) Budlulds  (3420)
faxg) = L2241 S/ (160] {B17};) (bu}dulc dS (3.424)
fary) = 2241 S/ (ube {2r};) (8t o)z dS (3.42

faagd = LY [ (10l (8ys);) (101 {B17);) (Butlbulods  (3a20)

lazf] = a(y 4(-5 nM

(140 (B25},)” {Bu}lbuladS (3.428)

Ve

where (),z = %9

3.2.3 Linearizing Method for System Equations
Assembling the element equations for either panel configuration for the constrained system

and using the linearized equations results in the following linearized eigenvalue problem:

] M ] [l K] _ |
ce* (Q [ 0] [I]] + [[—I] o] }) {@2 } cos(wt) = {0} (3.43)

where the linearized matrices [G] and [K] are defined for either the two- or three-dimensional

panel as
two-dimensional panel
M] = [My] (3.44)
6] = [G] + \/75 (5) 61+ % (-,c;)2 (G2 + % (%)2 [G24] (3.45)
) = [yl + 22 (£) KLy = 3 (£)] (KL gl Eomm) K Lg] + 5 (£)” 1K24]
+ 4]+ \/7§ (%) [Al] + ‘/75 (%) [A1f] + % (%)2 [A2;,] + 2— (%)2 [A2f]  (3.6)
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three-dimensional panel

(M) [0]
w= [ ] o0
= [([GH ela1 + 1162 + § (5)*[624]) [01] (5.48)
0 o

K] =

(14 + @A) + EOlAL] + §0?A2s) + F0)A2]) [01]
o] ]

[Ks) [KBfm]] V2, [[Klff] [Klfm]]
+[[KBmf] [Kmm] " 2 () [I{Imf] [0]

+ 20 [[Klef] [0] (K27 [0]]
2 o [0 o

A detailed look at the nonlinear problem from the physical viewpoint indicates that what

] 3 (3.49)

is required, is to find a deflected shape in order to compute the eigenvalues. Since from the
physical problem, the eigenvectors are related to the deflected shape, all that is needed to
approximate the solution is a shape that satisfies the geometric (essential) boundary conditions
and is a variation of the exact shape. Taking direction from the classical methods? the first
approximation is the normalized linear mode shape of interest. Further refinements are made by
using the normalized nonlinear mode shape as an estimate of the deflected shape. This can be
repeated until the estimated deflected shape and the computed normalized eigenvector differ by
as small a value as required. This solution procedure can best be described as a linearized
updated mode with a mnonlinear time function approximation (LUM/NTF) method. The
numerical differencing solution methods, which have been shown to converge in a stable manner,
are based on the same iterative procedure of using refined estimates of previous solutions to
start the current solution. Proceeding from this point, the remainder of this chapter is to outline

and define the solution procedure.

3.3 Solution Procedure
If Eq. (3.17) is normalized, then it can be scaled to a given limit-cycle amplitude c. Having
normalized and scaled Eq. (3.17), then Eq. (3.23) results, and u, v, w, and their derivatives for
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each element can be easily computed. Thus, by dropping the nonlinear terms in Eq. (3.19)
and solving the linear eigenvalue problem, the first estimate of the nodal quantities can be
approximated. With the linear eigenvectors, the process just described, see Fig. 3.1, can be
used to approximate the quantities necessary to assemble the nonlinear element matrices and
the assembled constrained system matrices. The same process can be repeated until successive
iterations yield the same eigenevalues, both real and imaginary, and the same eigenvectors
within the limits of a convergence criterion [56]. Therefore, for a given panel configuration and
dynamic pressure, the nonlinear system eigenvalues and eigenvectors can be computed.

As the dynamic pressure is increased monotonically from zero (A = 0 corresponds to in-vacuo
large-amplitude free vibration), the symmetric, real and positive-definite stiffness matrix is
perturbed by the skewed aerodynamic-influence matrix so that two of the eigenvalues approach
each other until they coalesce. A critical dynamic pressure, Acr, for the linear structure (c/k = 0)
and a limit-cycle dynamic pressure, ),, for the nonlinear structure are determined when the
real part of one of the eigenvalues approaches positive values for a fixed dynamic pressure.

At each value of A, an iterative solution of Eq. (3.19) must be performed. Each converged
solution for a fixed A generally requires three to ten iterations (at 85 cpu seconds per iteration
for an 8x4 half symmetric plate with 3600 degrees of freedom). Thus, to determine the
critical or limit-cycle A may require as many as 100 iterations. Couple this with the large
number of degrees-of-freedoms to accurately model a fluttering composite panel; the entire
success of achieving a solution depends on an efficient, vector-version, generalized unsymmetric
eigensolver.

Fortunately, only a few of the lowest eigenpairs are required during the solution of each
iteration. This feature makes it possible to develop an efficient eigensolver [57] for either large-
amplitude vibration or the nonlinear panel flutter analysis. The solver described in ref. [57] was

developed specifically for the unsymmetric eigenequation Eq. (3.19).
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1. For a given ), solve

M o Gl [Klo
_Q =
[[01 m]{q’}" [[-n [01]{%

0 = linear matrix

2. Iteration count n = 1, with the n-th approximation displacements
{(W}n =c{®}n-1

3. Compute and solve

Moo, [ K
Q[[o] m]{q’}"—[[—n [01]{‘1’}"

. Test for convergence. If fail, increment n =n + 1 and go to step 2.

[Z N

. Compute stresses and fatigue life

Fig. 3.1 Nonlinear Panel Flutter Solution Procedure.
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Chapter 4

VERIFICATION OF FINITE ELEMENT METHOD

The primary objectives of this study are to develop a finite element formulation and solution
procedure for the large-amplitude free vibration and large-amplitude, nonlinear panel flutter
response for both two- and three-dimensional isotropic/composite panels. In addition, a full
evaluation of the effects of the complete third-order piston aerodynamic theory to assess the
influence of each of the higher-order terms was required. Unless specifically noted, all of the
material properties used for this study are from Ref. [58] and are summarized in Table 4.1.

Thus, the purpose of this chapter is to perform a detailed comparison of the proposed
method with alternate solution methods to assess the validity of the proposed approach. A
detailed evaluation of the full problem, for a range of system parameters pertaining to the
large-amplitude composite panel flutter problem using the full third-order piston aerodynamic
theory is presented in Chapter 5.

An extensive effort has been made to correlate the present finite element method with
as many alternate solutions as possible. Since the proposed finite element method is highly
nonlinear, i.e. nonlinear in both geometrical and aerodynamic-loading terms, a thorough
evaluation of the proposed methed is conducted in order to validate the approach and procedure
with as many known published solutions as possible. Also, since there are not any known
solutions to compare these results with directly, a systematic comparison with existing alternate
methods is attempted with as many cases as possible to validate many of the individual
complexities. Because the computation of the limit-cycle dynamic pressure is a result of two
nonlinear modes coalescing, the validation starts with the large-amplitude free-vibration (the
wind-off condition, A = 0) of two-dimensional panels. An excellent and current review of the
nonlinear vibration of plates is given by Sathyamoorthy [59]. Building from this case, the

linear aerodynamics are included and compared with existing panel flutter solutions. Next,
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the same comparisons are made for isotropic and composite three-dimensional panels where
alternate solutions exist. Since the solution methods for different boundary conditions, clamped
or simply supported, vary in complexity, and in some cases approach, comparisons are also made

for several boundary support conditions.

4.1 Two-Dimensional Isotropic Panels
A study to determine the number of finite elements necessary to achieve a converged
nonlinear panel flutter solution was performed. It was found that there was approximately 2%
difference between an eight-finite-element solution and a twelve-finite-element solution, whereas
there was less than 0.1% difference between twelve- and sixteen-finite elements. Therefore, all

of the two-dimensional results for this study are for twelve-finite-element solutions.

4.1.1 Large-Amplitude In-vacuo Vibration

A comparison between various classical analytical solutions and a twelve-element-finite
element solution (u(0) = u(a) = 0) was performed for both simply supported and clamped
supported in-plane immovable panels. The first comparison is for a simply supported panel
[8]. The panel material properties are shown in Fig. 4.1 and the numerical results are shown in
Table 4.2. Analytical solutions using two different approaches from Ref. [60] are also shown. All
of these methods, assumed space mode (ASM), assumed time mode (ATM), and Ritz-Galerkin
use a single space mode to separate the spatial and time dependence on the displacements in the
governing equations. The finite element method also uses a single mode, but it is a nonlinear
mode that is iterated in Eq. (3.5) until subsequent iterations both use and produce the same
mode shape and eigenvalue. The comparison between the single mode analytical solutions and
the finite element method is good and predicts the same type of response as that of reference
[8] for the first and second modes.

The second comparison is with Yamaki and Mori’s [61] three-mode Galerkin procedure for
the nonlinear vibration of a clamped two-dimensional panel. The nondimensional first mode
frequency for several amplitude ratios is presented in Table 4.3. For moderately large-amplitude
vibrations (¢/h < 2.), the multi-mode results agree with the finite element results extremely
well up to an amplitude ratio of two. For the amplitude ratios greater than two, the finite

element results exhibit a softer response than a three-mode Galerkin solution. For the larger
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amplitudes, it is possible that more modes are necessary for a converged solution. To achieve
a converged solution, for the panel flutter problem, Dowell [18] determined that as a minimum

six modes were required.

4.1.2 Large-Amplitude Flutter with Linear Aerodynamics

A comparison is made with Dowell’s six-mode numerical integration limit-cycle oscillation
and Eslami’s [32] six-mode method of multiple scales and harmonic balance results using the
first-order piston aerodynamic theory. However, since the finite element formulation presented
here differs slightly from the formulation presented in {18] and [32], the finite element in-plane
stiffness matrices were scaled by (1 —v?) to correlate with Eq. (1.4) of Ref. [18]. The comparison
with [18] is shown in Fig. 4.2 for several /M ratios, and the finite element numerical results
are tabulated in Table 4.4. The comparison with Ref. [32] is shown in Table 4.5. The finite
element results agree extremely well with the alternate methods of Refs. [18] and [32]. This
agreement indicates that the (LUM/NTF) method for two-dimensional structures is a viable

approach for solving these types of problems.

“

4.2 Three-Dimensional Rectangular Panels

A convergence study was conducted for the three-dimensional panels in a similar fashion as
was done for the two-dimensional panels to assess the number or refinement of the finite element
mesh to assure reasonable convergence. Due to complexity of the additional dimension and the
large number of degrees-of-freedom per node for the comforming element, the convergence study
also evaluated the appropriate mesh when symmetry was employed.

For a square isotropic simply supported panel a quarter-symmetric model for various meshes
was analyzed, and the large-amplitude free vibration results compared with the results for a full
model. The results presented in Table 4.6 show both the linear frequency, w,, and the nonlinear
frequency ratio, wy]/wo, for an amplitude ratio of 1.0 for several meshes. Also noted in the
table is the exact linear frequency for the panel [62]. These results clearly indicate that the
quarter-symmetric model and the full model yield exactly the same results, and that a quarter
symmetric 2x2 model or 4x4 full model are quite accurate for the linear case. However,
for the nonlinear model, the improvement for a refined mesh is less than .02% for a 8x8

mesh when compared to the 12x12 mesh and less than .05% from a 6x6 to a 12x12 mesh.
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Similarly, the nonlinear frequency ratio for five different alternate methods shows that the 6x6
full mesh is quite adequate to predict the appropriate response. Since the clamped panel is
more difficult to evaluate because of the constraints on the assumed functions that satisfy the
geometric boundary conditions as well as requiring more finite elements to simulate the zero-
slope condition at the boundaries, a convergence study for this condition is also conducted.
These results are presented in Table 4.7. For both the linear frequency and the nonlinear
frequency ratio, the 8x8 full mesh or the 4x4 quarter mesh show very little improvement when
a mesh refinement is made. For the nonlinear frequency ratio using an amplitude ratio of 1.0,

the 8x8 finite element results compare quite well with alternate methods.

4.2.1 Large-Amplitude In-vacuo Vibration—Isotropic

A more detailed comparison for the simply supported, in-plane immovable (u(0,y) =
u(a,y) = v(z,0) = v(z,b) = 0), isotropic panel over a wider range of amplitude ratios is
shown in Table 4.8 and compared to the results for three different alternate methods. The
present finite element results are using a 6x6 quarter symmetric mesh. These results at all
amplitude ratios compare quite well. A similar comparison for the clamped panel is made in
Table 4.9. These results, for the same mesh, compare within 0.5%.

Using the same clamped panel configuration, the nonlinear frequency ratios for in-plane
movable boundary conditions are compared to a single mode elliptical integral and perturbation
solution in Table 4.10. These results compare within 8.7%. The larger difference can be
attributed to the single mode assumption for the perturbation and elliptical integral solutions
coupled with the solution approach of only requiring the midsurface strains at the boundaries

to vanish in an average sense.

4.2.2 Flutter with Linear Aerodynamics—Isotropic

The linear panel flutter solutions for the critical dynamic pressure are presented in Table 4.11.
The present finite element solution is compared to exact and approximate classical solution as
well as three other finite element solutions for both simply and clamped supported panels. In
addition, the linear critical frequencies are also compared and are found to agree extremely well.
The better comparison is with the classical exact solution of Houbolt {12] for a simply supported

panel. The present finite element method, however, does agree extremely well with all of the
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other finite element methods for both simply and clamped supported panels for the critical
dynamic pressure and frequency. These results were obtained using an 8x4 half-symmetric
mesh; thus, this mesh will be used for the further evaluation of isotropic panel flutter analyses.

To establish additional confidence in the present solution method, an 8x4 half-symmetric
mesh was used to compare with existing methods. Dowell’s {18] well known numerical
integration results along with Eslami’s harmonic balance solution for a simply supported, in-
plane immovable, square panel are presented in Table 4.12. Since both of these investigators
display their limit-cycle results in the form of charts, the limit-cycle data shown in the table
were read from their figures. The finite element results compare favorably with the maximum
difference of only .2%. Also shown in Table 4.12 are the limit-cycle results for the clamped,
in-plane immovable panel. Kuo et al. {21} and Eslami’s [32] limit-cycle six-mode perturbation

results were also evaluated from charts and compared within 1.8%.

4.2.3 Linear In-vacuo Vibration—Composite

Since an unsymmetrical response is usually associated with a general laminate, most of the
results for a composite panel are performed using a full mesh. Similar to the isotropic case, a
convergence study was conducted to evaluate the mesh refinement required to produce accurate
results.

The linear frequency results shown in Table 4.13 compare the present finite element solution
to those from a commercially available finite element code [68]. The material used in this
study was selected to have a high orthotropic ratio of Ej;/FEgs = 40 and the more difficult
clamped boundary conditions were employed to analyze an unsymmetrical 30° two-layer angle-
ply laminate. These results indicate that the conforming element handles the composite
plate characteristics quite well by only changing the linear frequency by 0.5% when refining
from a 10x10 to 12x12 mesh. The commercial code’s converging characteristics behave in
a like manner. However by adding an additional layer to the laminated, making the panel
symmetrical, requires the commercial code to undergo extensive refinement to approach a
converged solution. These results are shown in Table 4.14 where it is seen that the present
element conforming solution converges very quickly while the commercial code needs over

twenty times more elements. Thus far, the convergence rate was determined to be better
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for the present element, but the point of convergence remains to be addressed. The present
finite element, the commercial code’s finite element, and a 144 term Ritz-method solution are
shown in Table 4.15. These results clearly indicate the excellent convergence characteristics
for the conforming element with an 8x8 mesh for both symmetric and unsymmetrical angle-ply

laminates.

4.2.4 Large-Amplitude In-vacuo Vibration—Composite

Based on the previous evaluation, the large-amplitude free vibration of composite three-
dimensional panels was conducted using an 8x8 mesh. The results in Table 4.16 compare a
two-layer 45 degree angle-ply laminate perturbation solution with the present finite element
solution. For the properties noted in the table, this comparison indicates good agreement over
an amplitude ratio of one plate thickness with less than 1% difference. Similarly, the present
finite element solution for a four-layer cross-ply agrees with both a single mode numerical
integration and single mode perturbation solutions. These results, over a range of amplitude
ratios, are presented in Table 4.17 for a simply supported panel using the properties noted.

Clamped boundary condition finite element results are shown in Table 4.18. These results
compare the present large-amplitude response with both single mode elliptic integral and
perturbation solutions for a four-layer cross-ply laminate. The nonlinear clamped response
in Table 4.18 is for the same panel geometry used to develop the results in Table 4.17. Thus, a
comparison of the effect that changing boundary support conditions has on the panel’s response

is made by comparing Tables 4.17 and 4.18.

4.2.5 Flutter with Linear Aerodynamics—Composite

The final comparison to validate the present finite element method and solution procedure
is for a single layer anisotropic square panel. This panel is clamped along one edge parallel to
the free stream flow with the other three edges free. This comparison combines the flutter
phenomena with the full anisotropic material effects along with a mixed set of boundary
conditions. The present finite element results for the critical dynamic pressure for three
lamination angles are presented in Table 4.19. Since reference [72] elected to use a 5x5 mesh,
these results are also for a 5x5 mesh. The information presented in Table 4.19 is for a slightly

different definition of the nondimensional dynamic pressure which is noted in the table; thus,
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the values are smaller than those normally presented for a similar isotropic panel. For all three

lamination angles that were evaluated, the present finite element method agreement is good.

Table 4.1 Material Properties

Weight
Material Eq, Eoo, Gi2, Density,
Number Material Msi Msi Msi V1o 1b/in3
1 Grs/Ep 21.30 1.58 0.93 .38 .058
T300/5208
2 B/Ep 30.00 2.70 0.93 21 .0725
Avco
5505/4
3 B/AL 31.00 20.00 8.40 27 .095
B5.6/Al
6061-F
4 Steel 30.00 30.00 11.54 .30 .283
Isotropic
5 Aluminum 10.00 10.00 3.84 .30 .100
Isotropic
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Table 4.2 Effects of Amplitude Ratios, ¢/h, on In-vacuo
Frequency Ratios, wp}/wo, for Simply Supported
In-plane Immovable 2-D Panel

Assumed Assumed
Space Time Ritz-
Amplitude Mode Present Mode Mode Galerkin
c/h n FEM 8] (60] [60]
0.0 1 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 — —
0.2 1 1.0436 1.0439 1.0296 1.0440
2 1.0441 1.0439 — —
04 1 1.1662 1.1644 1.1136 1.1662
2 1.1662 1.1644 — —
0.6 1 1.3455 1.3397 1.2410 1.3454
2 1.3452 1.3397 — —
0.8 1 1.5623 1.5506 1.4000 1.5620
2- 1.5621 1.5506 — —
1.0 1 1.8024 1.7844 1.5811 1.8028
2 1.8027 1.7844 — —
1.2 1 2.0588 2.0335 1.7776 2.0591
2 2.0590 2.0335 — —

Table 4.3 Comparison of Amplitude Ratios, c¢/h, on In-vacuo
Frequency Ratios, wy) /w, for Clamped Supported
In-plane Immovable 2-D Panel

Nondimensional Frequency
Wnl / Wo
Galerkin Assumed
Amplitude Space Mode, Yamaki Present
c/h and Mori {61] FEM
0.0665 22.4 22.40
0.5307 24.0 24.00
0.9833 27.5 27.53
1.4571 32.5 32.55
2.0451 40.0 39.81
2.6602 50.0 48.06
3.0683 60.0 53.73
Wy = m
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Table 4.4 Effects of u/M on )As vs. Amplitude Ratio for
Simply Supported In-plane Immovable 2-D Panel
[in-plane stiffness modified by (1 — v2)]

p/M
Amplitude

c/h 01 1 2 5
0.0 344.49 355.09 367.56 410.44
0.2 355.22 366.35 379.45 424.93
04 387.73 400.63 415.89 469.29
0.6 443.46 459.57 478.91 548.44
0.8 525.64 547.32 573.72 673.12
1.0 640.81 671.78 710.58 867.65

3

=5

Table 4.5 Flutter Amplitude, ¢/h, Critical Dynamic Pressure, Ay, Flutter
Frequency, w, for a Simply Supported In-plane Immovable
2-D Panel [in-plane stiffness modified by (1 — v2)]

H. Eslami
Present FEM (6 mode solution), [32]
¢/h Acer w Acr w

0.0 344.44 32.68 344.20 32.44
0.3751 382.47 34.56 381.98 34.46
0.4681 403.98 35.70 403.27 35.57
0.7486 501.67 40.59 499.49 40.28
0.8446 548.14 42.76 545.11 42.39
0.9435 604.38 45.28 600.28 44.86

_ 2ga3

M=Hp
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Table 4.6 Finite Element Mesh Convergence Study for an In-plane

Immovable Simply Supported Isotropic 3-D Square Panel

(E = 30 Msi, v = .3, p = .00026 lbs-sec/in?,
a=b=12in, h = .04 in)

Finite Element wnl/Wo wo, rad/sec
Mesh Plate Size (c/h =1.0) 325.9716 [62]
2x2 1/4 1.4335 326.0377
3x3 1/4 1.4234 326.0027
4x4 1/4 1.4198 325.9992
6x6 1/4 1.4174 325.9970
4x4 Full 1.4335 326.0377
6x6 Full 1.4234 326.0027
88 Full 1.4198 325.9992
12x12 Full 1.4174 325.9970
Inc. FEM [63] — 1.4109 —
Perturb. [64] — 1.4024 —
Elliptic [65] — 1.4097 —
Perturb. [66] — 1.4327 —
Num. Int.[66] — 1.4141 —

Table 4.7 Finite Element Mesh Convergence Study for an In-plane

Immovable Clamped Supported Isotropic 3-D Square

Panel (E = 30 Msi, v = .3, p = .00026 lbs-sec?/in?,

a=b=12in, h = .04 in)

wn1/wo
Finite Element Plate Size (c/h =1.0) wo, rad/sec

2x2 1/4 1.2137 595.4875

3x3 1/4 1.1866 594.2050

4x4 1/4 1.1762 594.3917

6x6 1/4 1.1702 594.3188

4x4 Full 1.2137 595.4875

6x6 Full 1.1866 594.2050

8x8 Full 1.1762 594.3917

12x12 Full 1.1702 594.3188
Inc. FEM [63] — 1.1762 —
Perturb. [67] — 1.1713 —
Elliptic [67] — 1.1731 —
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Table 4.8 Free Vibration c/h Ratio vs. wy) /w, Ratio for In-plane

Immovable Simply Supported Square Isotropic 3-D Square

Panel (6x6: Quarter Plate)

Chu-

Inc. FEM Herrmann Eisley

Lau et al. (64] [65]
c/h Present FEM (63] Single Mode Single Mode
0.2 1.0200 1.0196 1.0195 1.0196
0.4 1.0771 1.0763 1.0757 1.0761
0.6 1.1664 1.1645 1.1625 1.1642
0.8 1.2839 1.2779 1.2734 1.2774
1.0 1.4174 1.4109 1.4023 1.4097

Table 4.9 Free Vibration c¢/h Ratio vs. wy)/w, Ratio for In-plane

Immovable Clamped Supported Square Isotropic 3-D Square

Panel (6x6: 1/4 Quarter Plate)

Inc. FEM Elliptic Int. Perturbation

Lau et al. (67] [67]
c/h Present FEM [63] Single Mode Single Mode
0.2 1.0075 1.0073 1.0075 1.0075
0.4 1.0293 1.0291 1.0030 1.0296
0.6 1.0644 1.0648 1.0066 1.0652
0.8 1.1115 1.1138 1.1139 1.1130
1.0 1.1702 1.1762 1.1731 1.1713

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Table 4.10 Free Vibration c/h Ratio vs. wp3/w, Ratio for In-plane

Movable Clamped Supported Square Isotropic 3-D Square
Panel (6x6: 1/4 Quarter Plate)

Elliptic Int. Perturbation
(67) (67]

¢/h Present FEM Single Mode Single Mode
0.2 1.0039 1.0075 1.0075
04 1.0145 1.0030 1.0296
0.6 1.0287 1.0066 1.0652
0.8 1.0482 1.1139 1.1130
1.0 1.0707 1.1731 1.1713

Table 4.11 Linear Panel Flutter of 3-D Isotropic Square Panel
(E = 10 Msi, v = .3, p = .00026 lbs-sec?/in?,
a=b=12in, h = 0.04 in)

Simply Supported Clamped Supported
Dynamic Dymnamic
Solution Pressure Eigenvalue Pressure FEigenvalue
Method Acr ker Aer ker
FEM 512.33 1846.55 852.73 4294.07
[41]
FEM 511.79 1834.29 850.42 4282.03
[35] ‘
FEM 512.20 1844.00 853.40 4292.00
[68]
Exact/Approx 512.65 1848.21 876.80 4077.00
[12]
Present
FEM 512.37 1846.15 850.97 4286.49
(8x8 Half-Plate)

3

k= w¥(phat/D), Aer = %5
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Table 4.12 Nonlinear Panel Flutter with Linear Aerodynamics, Az,
for 3-D Isotropic Square Panel (E = 10 Msi, v = .3,
p = .00026 Ibs-sec?/in, a = b = 12 in, h = 0.04 in)

Simply Supported Clamped Supported
Dowell [18]/ Present Kuo [21]/ Present
Eslami [32] FEM Eslami [32] FEM
c/h 1 (8x4 Half Plate) t (8x4 Half Plate)
0.0 540.5 535.75 881.0 887.59
0.4 578.4 583.38 940.5 940.12
0.8 724.8 731.63 1081.1 1100.67

'Values read for charts, A= &

Table 4.13 Linear Free Vibration of Clamped Angle-Ply Laminated 3-D Square
Panel (Ey) = 30 Msi, Egp = .75 Msi, G19 = .375 Msi, vjg = .25,
p = .00026 lbs-sec?/in?, [30/—30], a = b =12 in, h = .12 in)

NOTE: Ajq, Ags, D16, D26 =0, B;; #0

Present FEM EAL [64]
F-E Mesh wp, rad/sec wo, rad/sec
10%10 727.9216 714.1854
12x12 724.4325 715.2916
36x36 — 717.9477
48x48 — 718.1226
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Table 4.14 Linear Free Vibration of Clamped Angle-Ply Laminated 3-D Square
Panel (Eq) = 30 Msi, Egg = .75 Msi, G12 = .375 Msi, vjp = .25,
p = .00026 lbs-sec?/in?, [30/-30/30), a = b= 12 in, h = .12 in)
NOTE: Aj¢, A2, D16, D2s =0, B;; #0

Present FEM EAL [69]

F-E Mesh Wy, rad/sec wy, rad/sec
8x8 1611.1372 1481.2051
10x10 1609.9117 1521.4849
12x12 — 1545.5150
36x36 — 1600.4785
48x48 — 1603.8232

Table 4.15 Linear Free Vibration (w, rad/sec) of Simply Supported Angle-Ply
Laminated 3-D Square Panel (E}; = 30 Msi, Epp = 12.245 Msi,
G12 = 5.9308 Msi, 115 = .23, p = .00026 lbs-sec?/in?, @ = b =12 in,

hply = 0.04 in)
Lamination Angle
Method (30/—-30/30] 130/—30/30/-30]
Ritz-Method, 144 Terms 1315.8897 1767.7612
Leissa [70]
EAL (69
8x8 1303.9182 1769.4746
12x12 1308.5281 1774.3209
Present FEM
8x8 1312.6709 1766.5197
10x10 1312.6021 1766.4549
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Table 4.16 Free Vibration c/h Ratio vs. wyj /w, Ratio Simply Supported
In-plane Immovable Angle-Ply [45/—-45] Laminated 3-D Square
Panel (E1; = 39.39 Msi, Eyy = 4.788 Msi, G2 = 1.959 Msi,
vig = .3, p = .00026 lbs-sec?/in?, @ = b = 12 in, h = 0.04 in)

Chandra (71]

Single Mode Present FEM
c/h Perturbation (8x8 Full Plate)
0.2 1.0251 1.0261
0.4 1.0970 1.1001
0.6 1.2073 1.2134
0.8 1.3467 1.3563
1.0 1.5071 1.5204

Table 4.17 Free Vibration ¢/h Ratio va. wp)/we Ratio Simply Supported
In-plane Immovable Cross-Ply [0/90/90/0] Laminated 3-D
Square Panel (Ey; = 40. Msi, E99 = 1. Msi, G5 = .5 Msi,
vi2 = .25, p = .00026 Ibs-sec?/in?, a = b =12 in, h = 0.04 in)

Singh et al. [66]
Single Mode Chandra {71]
Numerical Single Mode Present FEM
c/h Integration Perturbation (8x8 Full Plate)
0.2 1.0535 1.0489 1.0505
0.4 1.2038 1.1836 1.1894
0.6 1.4172 1.3791 1.3924
0.8 1.6691 1.6135 1.6374
1.0 2.2355 2.1466 2.1958
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Table 4.18 Free Vibration c¢/h Ratio vs. wn;/w, Ratio Clamped Supported
In-plane Immovable Cross-Ply [0/90/90/0] Laminated 3-D
Square Panel (Eq; = 40. Msi, Eyy = 1. Msi, Gj3 = .5 Msi,
vig = .25, p = .00026 lbs-sec?/in%, a = b = 12 in, h = 0.04 in)

Elliptic Integral Perturbation
Single Mode Single Mode Present FEM
c/h [67] [67] (8x8 Full Plate)
0.2 1.0127 1.0127 1.0135
0.4 1.0497 1.0499 1.0524
0.6 1.1083 1.1091 1.1142
0.8 1.1850 1.1871 1.1954
1.0 1.3792 1.3859 1.4023

Table 4.19 Linear Panel Flutter, Ay, for 3-D Anisotropic Cantilever
Square Panel (E11/Eg = 2., Gia/E2 = 0.364, v12 = .24,
p = .00026 Ibs-sec?/in%, @ = b =12 in, h = 0.04 in)

Lamination Angle
Solution
Method 8 = 15° 0 = 45° 8 = 90°
K.-J. Lin et al. 2.470 3.920 3.455
(72]
Rossettos, 2.385 4.055 3.505
Tong (73]
Present FEM 2.386 4.060 3.507
(5x5 Full Plate)

Ao = %3;, where D = Egqh3
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Fig. 4.1 Comparison of Large-Amplitude Vibration Solutions for a Simply-Supported Panel.
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Fig. 4.2 Limit-Cycle Amplitude Ratios vs. Nondimensional Dynamic Pressure, A,.
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Chapter 5

NONLINEAR PANEL FLUTTER NUMERICAL RESULTS

To meet the primary objectives of this study, a finite element formulation and solution
procedure (Chapters 2 and 3) for the large-amplitude, panel flutter response has been developed.
For both two- and three-dimensional isotropic/composite panels the finite element method has
been employed to provide a full evaluation of the effects of the complete third-order piston
serodynamic theory. Several cases are presented that assess the influence of each of the higher-
order terms. In addition, an evaluation of the composite panel effects is offered to investigate the
influence of material orthotropy, number of layers, and stacking sequence. All of the material
properties used in this chapter are from Ref. [58] and are summarized in Table 4.1.

Thus, the purpose of this chapter is two-fold. The first is to perform a detailed evaluation
of the proposed method for the two-dimensional panel. Second, a detailed evaluation of the
full problem is made for a wide range of composite material parameters pertaining to the large-
amplitude composite panel flutter problem using the full third-order piston aerodynamic theory.

For both of these cases, an assessment of third-order piston aerodynamic theory is also provided.

5.1 Two-Dimensional Isotropic Panel
A study to determine the number of finite elements necessary to achieve converged results
was performed and discused in section 4.1. These results concluded that twelve elements were
sufficient, thus for all of the two-dimensional results presented in this chapter are for twelve-
finite-element solutions. Also, since orthotropic materials for two-dimensional structures have

little significance, these results are for isotropic-type materials.

5.1.1 System Parameter Effects
The effects of the nonlinear structure and hypersonic third-order piston theory (for c/h =

+0.6) when compared to the linear structure and first-order piston theory (c/h = 0) for a simply
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supported panel can be seen in Fig. 5.1, which depicts coalescence of the first and second linear
modes at Ag = 343.35. Classical analytical methods establish coalescence at A = 343.35 [41].
Thus, linear finite-element results compare well with linear classical solutions. The complete
panel behavior is characterized by plotting the complex eigenvalue (a + iw) variation with
increasing dynamic pressure A. These variations are shown in Fig. 5.1 for the first two modes.
As ) increases from zero (in-vacuo), the !m(f2;) = w; for the first mode increases and the
Im(2) = wq for the second mode decreases until the two modes coalesce. When damping
is present, the instability sets in at a somewhat higher value of A as indicated when a = 0.
This point (Acr) for the linear cases is a function of the system parameter {7; however, for the
nonlinear case it (A¢) is a function of 4; and MEh‘ Other than the obvious increase in A at
coalescence, the nonlinear aerodynamics also produces another significant effect which is seen
by the dependence of A on the sign of the assumed mode shape. McIntosh [9] attributes this
effect to the nonlinear w,2 term in Eq. (2.8) producing an overpressure which in turn tends to
push the panel into the cavity.

The comparison between the first-order and third-order aerodynamic theories is shown in
Fig. 5.2. Again, the effect of the sign of the mode shape on the response is noted. As shown by
the solid curve, the first-order aerodynamic theory and nonlinear structure shows no response
change relative to the sign of the assumed mode; in fact, the first-order response for these
particular system parameters falls between the tc/h for the third-order theory. As cited in
Ref. 9, the change in the frequency oscillation is quite small. The variation of frequency is
indeed small, but the variation in A is on the order of 10%. In Fig. 5.3 the panel deflection
shapes at Ay for ¢/h = £1 and —0.909 for the third-order piston theories are plotted—note that
the maximum deflection occurs at z/a = .75.

Since Ay depends on the system parameters ﬁ and ~MEQ, effect of increasing these parameters
on the change in eigenvalues for a variation in ) is shown in Fig. 5.2 for ¢/h = .6. Most noticeable
is the change in the variation in ), for the increase in system parameters. This change, for these
parameters, results in a lower dynamic theory than what would be predicted using the linear

Mh

aerodynamic theory, compare with Fig. 5.1. For %* = .1, and +c/h, the response is more

destablizing than Fig. 5.1 for 47 = .01.
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A comparison of the limit-cycle amplitude verses A, for the first-order and third-order
aerodynamic theory is shown in Fig. 5.4. For the parameters noted on the figure and a limit-cycle
amplitude less than one-half of a plate thickness, the amplitude-dynamic pressure relationship
can be reasonably estimated by the linear aerodynamic theory; however for the larger limit-cycle
amplitudes of the order of a plate thickness, the nonlinear aerodynamic theory may be required.
This is more clearly illustrated when the effects of ﬁ and iﬂﬁ are considered. Figure 5.5 shows
the influence of varying these parameters on the c/h vs A, relation. Due to the strong influence
of the nonlinear effects from both the geometry (“hardening”) and aerodynamic (“softening”),
these results suggest that the third-order aerodynamic theory should be employed for limit-cycle
amplitudes that are greater than half-a-plate thickness,

5.1.2 Boundary Support Effects

In Fig. 5.6, the panel amplitude of the limit-cycle oscillation is given as a function of \s for
various edge restraints. The most interesting result is that the limit-cycle motions are different
for hinged-clamped and clamped-hinged panels. This condition is difficult to analytically
evaluate; however, it is easy to account for using finite-elements. This occurs because the
constrained system matrices are different for these support conditions, which easily accounts
for the different deflection shapes for the panels. It is also interesting to note that the slopes

for the various boundary conditions behave according to the trailing edge support conditions.

5.1.3 Nonlinear Aerodynamic Effects

Another interesting aspect is the influence that the aerodynamic nonlinear terms have on the
motion of the panel as it oscillates at a high dynamic pressure. Table 5.1 summarizes, for the
parameters shown, a comparison between the first-order, second-order, and third-order piston
theories and the effect of neglecting each of the nonlinear aerodynamic terms independently of
the others. The term that has the most significant influence when deleted is the w,2.

It should be pointed out that there are a couple of ways to group the nondimensional
parameters. For example, Refs. 1 and 9 each elect to nondimensionalize the w,; term differently.

Reference 9 chooses to make the coefficient a function of ) whereas Ref. 1 eliminates X in favor
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of a nondimensional damping parameter, g,. The work presented here follows the parameter

notion of Ref. 9 so that the in-vacuo free vibration of a panel can be assessed by setting A = 0.

5.2 Three-Dimensional Rectangular Panel

An effort has been made to present finite element results for as many of the three-dimensional
parameters as possible. Since for the two-dimensional panel, a range of "I‘W = .01-0.1 and
-A;'!l-'—‘ = .05-0.1 flow parameters was presented, the finite element results for the three-dimensional
panel are provided for ﬁ = .1 and Ma—h— = .05. An assessment of how these flow parameters
influence the panel flutter phenomena was considered in detail for the two-dimensional panel.
Limiting the flow parameters for the three-dimensional panels minimizes the total number of
complete system parameters necessary to study the flutter of composite panels. In addition,
unless specifically noted the results presented in this chapter are for a square, simply-supported

8x4 half-symmetric mesh.

5.2.1 Limit-Cycle Oscillations

Panel flutter designs are generally focused on fatigue life (or service life) considerations.
That is, the repeated cyclic application of a self-excited loading to a stress level in excess of the
material’s endurance limit results in a finite number of these applications before a structural
failure becomes emanate. Since the aerodynamic damping forces are nonlinear and amplitude-
dependent, a stationary motion is achieved in which the panel gains energy during part of the
cycle and dissipates energy during the remaining part of the cycle, so that during each cycle
the net energy exchange is zero. Thus at a given flow velocity (dynamic pressure), the flow
and the structure interact to produce a stable repeated oscillation at a specific amplitude and
frequency. This stable repeated motion is known as a limit-cycle. At a given amplitude for
a given dynamic pressure, the panel develops stresses associated with the limit-cycle, and the
stresses are repeatedly applied at the limit-cycle frequency. Therefore, the structure is limited
to a finite time in which it can sustain a given flow velocity.

This section presents the numerical results necessary to develop a description of the limit-
cycle flutter of a composite panel. The orthotropic, simply supported, square panel (a = 12
in, h = 0.04 in) used for this first study is a single layer of boron aluminum, B/Al B5.6/Al—

material 3 Table 4.1. Solving only the linear portion of Eq. (3.43) and varying the dynamic
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pressure from zero monotonically results in a variation of the system frequencies. As shown in
Fig. 5.7, the eigenvalues of the first mode and third mode increase while the second and fourth
mode decrease until two of the eigenvalues coalesce. For this configuration, the first and second
eigenvalues coalesce; however, with aerodynamic damping present, the real part of the system
eigenvalue vanishes at a slightly higher dynamic pressure. When the real part of the eigenvalue
vanishes the associated value of the dynamic pressure is, for the linear analysis, referred to as
the critical dynamic pressure and defines the stability boundary. The nondimensional dynamic

pressure shown in Fig. 5.7 is defined as

_ 2ga®
A= WD, (5.1)
where
D, = Ey A3 (5.2)

The nondimensional ) for this study has a different definition than that which is usually used
for isotropic materials. This is necessary due to orthotropic material requiring four material
properties to completely define their constitutive relationship, whereas isotropic materials need
only two. This definition of the dynamic pressure will be employed when presenting or discussing
three-dimensional panels whether isotropic or composite.

By including the nonlinear effects (geometric and aerodynamic) in Eq. (3.43) for a fixed
displacement amplitude and repeating the same analysis process, the value of A for which the
real part of the eigenvalue vanishes is found to occur at a larger dynamic pressure. For both a
¢/h = +1.0 and ¢/h = —1.0 amplitude ratios, the dynamic pressure and eigenvalue variations
are shown in Fig. 5.8. As was the case for the two-dimensional panel, the response is different
for a positive or negative assumed displacement amplitude. When the real part of the eigenvalue
vanishes for a fixed displacement amplitude, the corresponding dynamic pressure is the limit-
cycle dynamic pressure. Associated with this dynamic pressure and amplitude is the frequency
at which the panel will oscillate.

Figure 5.8 shows the panel response for a fixed amplitude ratio. If this approach is repeated
for several amplitude ratios, then the response shown in Fig. 5.9 results. These results show
that as the limit-cycle dynamic pressure is increased above the critical value, then the panel will

oscillate at increasing amplitude levels. For this case, the corresponding nonlinear limit-cycle
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frequency to critical frequency is shown in Fig. 5.10 for both assumed positive and negative
amplitudes. These results indicate that the variation in frequency between positive and negative
amplitude ratios up to about 75% of the panel thickness is negligible, and begins to become
discernible at a displacement on the order of a panel thickness.

The typical panel limit-cycle deflection shape is shown in Fig. 5.11 for a full 8x12 finite
element mesh. Figure 5.12 also shows theses results plotted along the lines y/b = 0.5 and
z/a = .75. The basic shape remains similar to those for two-dimensional panels. Similarly, the
maximum panel deflection is noted to occur at .75 of the length. Also shown is the shape at
this station in the lateral direction.

Knowing the displacements for an element one can then calculate the element stresses.
Using the limit-cycle deflections, in Eqgs. (2.19), (2.21), (2.29), and (2.30), the finite strains
and curvatures are computed for each element. For this study, the element finite strains and
curvatures are computed at the element centroids. Next the lamina reduced stiffnesses are
computed using Eq. (2.6) and then transformed to the panel coordinate system using Eq. (2.5).
With the transformed reduced stiffnesses and the finite strains and curvatures, Eq. (2.4) can
then be applied for each element to compute element centroidal stresses. The flow-side panel
surface and cavity-side panel surface longitudinal stresses are (also stresses in the principal
material direction ¢ for orthotropic panel) shown in Fig. 5.13. These stresses are maximum in
the vicinity of the peak displacement. Stresses on these same surfaces in the lateral direction
are shown in Fig. 5.14.

Thus, using the information provided by this analysis, for a given flow velocity, the panel’s
service life, estimated operating time, can easily be evaluated using fatigue data from a source
such as Ref. [58]. The fatigue data from [58] assess the number of cycles to failure for a given
peak stress. The peak deflection amplitude is know once the flow velocity is fixed. The peak
stress is computed from the flutter shape, and the time of allowable operations is computed
from the limit-cycle frequency. All of this translates to an allowable operational time at any
given velocity. For variable velocity operations, a cumulative fatigue damage theory such as
Palmgren-Miner cycle-ratio summation theory [74-75]; or if the order of the fatigue damage is

important, Manson’s cumulative theory [75] is available.
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5.2.2 Laminated Panel Effects

In the previous section the limit-cycle response of a panel for an orthotropic laminate was
investigated in detail. Since the stiffness of a laminate depends substantially on the number and
orientation of each lamina in the laminate, an evaluation of a regular cross-ply laminated panel
was performed. This evaluation computed the limit-cycle dynamic pressure for a range of limit-
cycle amplitudes for several regular laminates. To effect this, a panel thickness was selected and
the number of layers were increased from one to six as the limit-cycle amplitude was varied from
zero to one plate thickness. As each new lamina was added to the laminate, the orientation was
alternated between 0° and 90°. This results in a laminate that alternates between symmetric
and unsymmetric; thus, for the unsymmetric laminate the bending-extension [B] matrix is non-
zero. However, the [B] matrix is diagonal and only a 8 x4-mesh half-plate was modeled to exploit
global symmetry. The variation of the limit-cycle amplitude for a six-layer cross-ply laminate
is shown in Fig. 5.15. It is noted that the stiffer response is characterized by an orthotropic
laminate, (0], and the softest response is exhibited by a two layer, unsymmetric laminate, [0/90].
This is to be expected since the two layer cross-ply has an equal number of 0's and 90’s, 50% of
each. At three layers, the total percentage of 0’s increase to 67%, the maximum percentage for
a cross-ply. Any further increase in layers will reduce the effective stiffness of the laminate up
to approximately six layers at which point it is noted that the response is no longer sensitive
to the addition of alternating layers.

The frequency ratio variation, shown in Fig. 5.16, follows the same trend. The higher
frequency at a given dynamic pressure is associated with the softer laminate, and the lowest
frequency corresponds to the stiffer laminate. This does not imply that the multi-layer laminate
is the best design choice. Referring to Fig. 5.15 for a fixed dynamic pressure, the multi-layered
laminate will oscillate at both a higher frequency and amplitude; thus, it will develop higher
stresses and consume its service life at a faster rate.

To further investigate the effects of lamination angle, a single layered laminate was evaluated.
The lamination angle was varied from 0° to 90° and the limit-cycle dynamic pressure, for a
fixed limit-cycle amplitude of 0.6 of the panel thickness, was computed. The variation of the
lamination angle and its effect on the dynamic pressure is shown in Fig. 5.17. These results

show that again the orthotropic layer exhibits the most stable response. The difference between
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the 0° and 90° laminate is approximately a 20% reduction (for material 3) in the limit-cycle

dynamic pressure changing more noticeably between 30° to 60°.

5.2.3 Boundary Support and Aspect Ratio Effects

As was noted in the introduction, all of the classical solution methods are for either simply
supported or clamped supported panels. With the finite element method, any combination of
support conditions is easy to accommodate. The limit-cycle results presented in Fig. 5.18 show
the varying response that changing the support conditions has on panel flutter. These results
indicate that the clamped panel resists flutter much better than the simply supported panel. It
is again interesting to note that the slopes for the various boundary support conditions behave
according to the trailing edge support conditions.

The influence that the in-plane immovable boundary condition has on a simply supported,
orthotropic panel is shown in Fig. 5.19. The critical dynamic pressure (velocity) is unaffected
by this constraint. However, the movable boundary will allow the panel to change rapidly from
a small limit-cycle amplitude to a large limit-cycle amplitude over a relative small change in
flow velocity. Thus, restraining the in-plane motion‘of a panel will greatly extend its useful
service life.

Since most of these results were for a square panel, the effect of different aspect ratios
(a/b=0.5, 1.0, and 2.0) is shown in Fig. 5.20. The larger aspect ratios produce a more stable
response, and the smaller the aspect ratio, the less stable the response. However, for an aspect
ratio of a/b = 0.5, the loss in stability is not as great as the increase in stability for a/b = 2.0.
Thus, for the same panel flow area, the most effective use of the material is to configure the

geometry such that the flow-direction dimension is greater than the width.

5.2.4 Influence of Orthotropic Materials

The major portion of this study on three-dimension panel flutter has focused on a single
composite material. The orthotropic material was boron aluminum, B/Al, B5.6/Al—material
3 Table 4.1. For the materials listed in Table 4.1, it is easy to see that there are a considerable
number of cases and conditions to evaluate in order to fully characterize flutter of a composite
panel. This section attempts to address an approach to assess the panel fluttered for different

composite materials. By defining a composite material parameter, (E11E22/G%2) vy2, the
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limit-cycle dynamic pressure can be scaled and plotted against this material parameter for
several limit-cycle amplitudes. The results shown in Fig. 5.20 show a strong linear correlation
of these parameters. Thus, given any new material properties, a reasonable estimate of the
limit-cycle response can be assessed provided the analysis has been performed for at least
two material systems. Further works is required in this area to provide the designer with a

meaningful tool to accommodate flutter constraints into flow surface structural designs.

5.2.5 Nonlinear Aerodynamic Effects

To complete this study an assessment of the third-order piston aerodynamic theory is
provided. The influence that the nonlinear aecrodynamic terms have on the motion of the panel
as it oscillates at a high dynamic pressure is investigated for an isotropic material, and two
composite material stacking sequences. Tables 5.2-4 summarize, for the parameters shown, a
comparison between the first-order, and third-order piston theories and the effects of neglecting
each of the nonlinear aerodynamic terms independently of the others. Since there is very little
difference between second- and third-order piston theory, the three-dimension panel results are
limited to just a first- and third-order comparison. Table 5.2 is for an isotropic material, and
Tables 5.3 and 5.4 are for a boron aluminum material, B/Al B5.6/Al—material 3 Table 4.1.
Table 5.3 is for an orthotropic laminate and Table 5.4 is for a [0/90/0] laminate. For all of these
results, the term that has the most significant influence when deleted is the w,2. The effect
of including the higher-order theory for these cases when compared to the first-order theory
is approximately 4%. The most interesting conclusion from these results is that nearly all of
the contribution from the nonlinear aerodynamics is contained in the w,2 term and does not
contain any appreciable contribution from the nonlinear aecrodynamic damping. However, since
the number of parameters necessary to fully describe the limit-cycle motion can combine in a
large number of ways, and since the third-order theory is destablizing, it is recommended that,
as a minimum, the w,2 term be retained in panel flutter analyses. Using the first-order piston
theory and only the w,2 term, the limit-cycle dynamic pressures for an orthotropic laminate
were computed and compared. The results presented in Table 5.5 clearly show that the w,g

term has the most effect.
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Table 5.1 Effects on A; by Neglecting Higher Order Terms in

Aerodynamic Piston Theory (Eq. 2.8)¢

Piston Theory Neglect

1st- 2nd- 3rd-
c/h | order | order | order w,g W, W, w,g w,g w,? w,ﬁu,, w,tw,g
0.0 |344.49 [344.50 |344.49 |344.49 | 344.49 [344.49 |344.49 [344.49 | 344.49 | 344.49
0.2 |356.28 |353.50 |{353.50 |353.51 | 353.48 ]356.25 |353.53 |353.50 | 353.50 [ 353.50
0.4 }392.08 |385.90 |385.71 |385.71 | 385.68 |391.91 |385.89 |385.71 | 385.71 | 385.71
0.6 |453.60 |442.30 {441.87 |441.82 | 441.88 |453.18 [442.32 |441.88 | 441.88 | 441.87
0.8 |545.04 |525.60 |524.76 |524.75 | 524.67 |544.18 | 525.63 | 524.76 | 524.76 | 524.76 |
1.0 [674.76 [641.70 [640.24 1640.22 | 640.10 |673.27 |641.68 |640.24 | 640.24 | 640.23

Simply Supported, 2-D {; = .05, Maﬁ =.01, A= %‘g
Table 5.2 Effects on A; by Neglecting Higher Order Terms in
Aerodynamic Piston Theory (Eq. 2.8)%

Piston Theory Neglect

1st- 3rd-
¢/h | order | order w,} W, W,z _g w,g w,g w,? W,z W, w,g
0.0 49.06 | 49.06 | 49.06 49.06 49.06 | 49.06 | 49.06 49.06 49.06
0.2 50.15 | 49.85 | 49.84 49.88 50.16 | 49.85 | 49.85 49.85 49.85
0.4 53.42 | 52.76 | 52.76 52.72 53.64 | 52.75 | 52.76 52.76 52.77
0.6 58.98 | 57.84 | 57.84 57.77 59.00 | 57.84 | 57.84 57.83 57.88
0.8 66.99 | 65.19 65.2 65.09 67.01 | 65.13 | 65.2 64.19 65.28
1.0 77.77 75.04 | 75.05 74.89 77.80 | 75.04 | 75.04 75.03 75.18

“Simply Supported, £ = .05, Mh — 01, A= %
3-D Isotropic Panel
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Table 5.3 Effects on A; by Neglecting Higher Order Terms in

Aerodynamic Piston Theory (Eq. 2.8)%

Piston Theory Neglect

1st- 3rd-
c/h_| order | order w,%_ W,t W,z w,J?, w,g w,‘? w,tz W,z w,t w,g
0.0 41.78 41.78 | 41.78 41.78 41.78 | 41.78 | 41.78 41.78 41.78
0.2 42.86 42.62 | 42.62 42.56 4291 | 42.62 | 42.62 42.62 42.62
0.4 46.03 45.60 | 45.49 45.38 46.11 | 45.49 | 45.49 45.49 45.51
0.6 51.50 50.51 | 50.56 50.35 51.62 { 50.53 | 50.53 50.53 50.55
0.8 59.50 57.85 | 57.96 57.62 59.63 | 57.88 | 54.89 57.87 57.91
1.0 70.46 67.71 | 68.03 67.42 70.59 { 67.79 | 64.05 67.76 67.81

Simply Supported, 4 = .05, @ =01 A= %
Single Layer Composite, Material 3-Table 4.1
Table 5.4 Effects on ¢ by Neglecting Higher Order Terms in
Aerodynamic Piston Theory (Eq. 2.8)%

Piston Theory Neglect

1st- 3rd-
c/h | order | order w,f W,t W,z w,az, w,g w,? w,tz W,y | wg w,,z,
0.0 41.38 41.38 | 41.38 41.38 41.38 | 41.38 | 41.38 41.38 41.38
0.2 4234 | 42.10 | 42.11 42.04 42.39 | 42.10 | 42.10 42.10 42,11
0.4 4525 | 44.73 | 44.74 44.61 45.34 | 44.73 | 44.73 44.73 44.75
0.6 49.97 49.05 | 49.07 48.88 50.09 | 49.05 | 49.05 49.05 49.09
0.8 56.95 55.47 | 55.53 55.22 57.10 | 55.47 | 55.48 55.46 55.55
1.0 66.38 | 64.05 | 64.18 63.68 66.53 | 64.05 | 64.05 64.03 64.17

¢Simply Supported, 45 = .05, %—h- =01 A= %&‘g
Composite, Material 3-Table 4.1, [0/90/0]
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Table 5.5 Effects on Ay by Including w,2 Higher Order Terms with
First-Order Aerodynamic Piston Theory (Eq. 2.8)¢

First-Order
First-Order Third-Order Piston Theory
c/h Piston Theory Piston Theory Plus w,g
0.0 41.78 41.78 41.78
0.2 42.86 42.62 42.57
04 46.03 45.60 45.40
0.6 51.50 50.51 50.41
0.8 59.50 57.85 57.75
1.0 70.46 67.71 67.71

@Simply Supported, 47 = .05, Mh _ 01, A= %&‘%

a

Single Layer Composite, Material 3-Table 4.1
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Fig. 5.1 Variation of Eigenvalue with Nondimensional Dynamic Pressure for a Simply-
Supported Panel. (u/M = .01, Mh/a = .05).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c/h = +.6 } 3rd order
........... piston theory
50 B ST S
o | TTEET e
Im (Eigen.) .
o e fmeT
30 7" —c/h=1t6
______ 1st order
_______ piston theory
00 y
3rd order, c/h = -.6
10— 1st order, c/h = .6
3rd order, c/h = +.6 —l -
o, 1l
Re (Eigen.) ° 7
10
20 | I l | | il
0 100 2200 300 400 500 600

Dynamic pressure, A

Fig. 5.2 Variation of Eigenvalue with Nondimensional Dynamic Pressure for a Simply-
Supported Panel Using First- and Third-Order Piston Theory Aerodynamics.
(u/M = .1, Mh/a = .1).
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Fig. 5.3 Simply-Supported Panel Deflection Shapes for ¢c/h = +1.0, ¢/h = —1.0, and ¢/h =
—.909. (u/M = 01, Mh/a = .05).
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Fig. 5.4 Comparison of Nonlinear and Linear Piston Theory Aerodynamics on Large-Amplitude
Panel Flutter. (/M = .01, Mh/a = .05).
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Fig. 5.5 Limit-Cycle Amplitude at z/a = .75 vs. Nondimensional Dynamic Pressure for a

Simply-Supported Panel for Several Flow Parameters.
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Fig. 5.6 Limit-Cycle Amplitude at z/a = .75 vs. Nondimensional Dynamic Pressure for Various

Support Conditions.
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Fig. 5.7 Eigenvalue Variation for First Four Linear Modes of a Simply-Supported, Square Panel
for Material 3. (u/M = .10, Mh/a = .05).
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Fig. 5.8 Nonlinear Panel Flutter Eigenvalue Variation vs. Dynamic Pressure Using Third-Order
Piston Theory Aerodynamics of a Simply-Supported, Square Panel for Material 3.
(u/M = .10, Mh/a = .05).
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Fig. 5.9 Variation of Limit-Cycle Amplitude vs. Limit-Cycle Dynamic Pressure of a Simply-
Supported, Square Panel for Material 3. (u/M = .10, Mh/a = .05).
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Fig. 5.10 Variation of Limit-Cycle Frequency Ratio vs. Limit-Cycle Amplitude of a Simply-
Supported, Square Panel for Material 3. (u/M = .10, Mh/a = .05).
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Fig. 5.11 Limit-Cycle Deflection Shape of a Simply-Supported, Single Layer Square Panel for
Material 3. (u/M = .10, Mh/a = .05, A = 67.71, ¢/h = +1.0, 12x8 Full Panel).
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Fig. 5.12 Panel Limit-Cycle Deflection of a Simply-Supported, Single Layer Square Panel for
Material 3. (u/M = .10, Mh/a = .05, A = 67.71, ¢/h = +1.0, 128 Full Panel).
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Fig. 5.13 Longitudinal Surface Stresses Along a Simply-Supported, Square Panel at y/b = 0.5
for Material 3. (u/M = .10, Mh/a = .05, A = 67.71,c/h = +1.0, 12x8 Full Panel).
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Fig. 5.14 Longitudinal Surface Stresses Along a Simply-Supported, Single Layer Square Panel
at z/a = .88 for Material 3. (u/M = .10, Mh/a = .05, A = 67.71,c/h = +1.0, 12x8
Full Panel).
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Fig. 5.15 Effects of Number of Plies on Limit-Cycle Amplitude and Dynamic Pressure for a
Simply-Supported, Square Panel for Material 3. (u/M = .10, Mh/a = .05).
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Fig. 5.16 Effects of Number of Plies on Limit-Cycle Frequency and Dynamic Pressure for a

Simply-Supported, Square Panel for Material 3. (u/M = .10, Mh/a = .05).
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Fig. 5.17 Effects of Lamination Angle Variation on Limit-Cycle Dynamic Pressure for a Simply-
Supported, Single Layer Square Panel for Material 3. (u/M = .10, Mh/a = .05,
¢/h =0.6).
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Fig. 5.18 Limit-Cycle Amplitude at z/a = .75 and y/b = .50 vs. Dynamic Pressure for
Various Support Conditions for a Single Layer Square Panel of Material 3. (u/M =
.10, Mh/a = .05).
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Fig. 5.20 Limit-Cycle Amplitude at z/a = .75 and y/b = .50 vs. Dynamic Pressure for
a Simply-Supported, Single Layer Panel for Several Aspect Ratios for Material 3.
(#/M = .10, Mh/a = .05).
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Fig. 5.21 Limit-Cycle Parameter vs. Orthotropic Material Parameter for Limit-Cycle Ampli-
tudes and a Simply-Supported, Single Layer Square Panel of Material 3. (u/M = .10,
Mh/a = .05).
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Chapter 6

SUMMARY AND CONCLUSIONS
6.1 Concluding Remarks

This study, of the interaction between structures and aerodynamics, consisted of developing
and eveluating a finite-element approach for determining the nonlinear flutter characteristics of
two-dimensional isotropic and three-dimensional composite laminated panels using the third-
order-piston aerodynamic transverse loading theory. The unsteady, hypersonic, aerodynamic
theory and the von Karman large deflection theory were employed to formulate the aeroelastic
problem. Nonlinear flutter analyses were performed to assess the influence of the higher-order
aerodynamic theory on the structure’s limit-cycle amplitude and the dynamic pressure of the
flow velocity. The presented procedure has been used to solve the nonlinear panel flutter and
large-amplitude free vibration finite element equations. This procedure utilizes a linearized
updated mode approach with a nonlinear time function approximation (LUM/NTF) method.
Nonlinear flutter analyses were performed for different boundary support-conditions and for
various system parameters: plate thickness-to-length ratio, h/a; aspect ratio a/b; material
orthotropic ratio, lamination angle, and number of layers; Mach number, M; flow mass-density-
to-panel-mass-density ratio, u/M; dynamic pressure, A; and maximum-deflection-to-thickness
ratio, ¢/h. For large amplitude free vibration, alternative classical analytical solutions are
available for comparison. Linear finite-element flutter for isotropic and composite panels and
large amplitude isotropic panel flutter results were compared with existing classical solutions
and excellent agreement between the proposed finite element method and alternate solution
methods was found. The large amplitude panel flutter results using a frequency domain solution
and the full third-order piston aerodynamic theory were presented to assess the influence of the
nonlinear aerodynamic theory and for the cases investigated in this study for both two- and

three-dimensional panel only the w,_?c term was found to be significant.
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The overall goal of the present study was to develop an effective computational strategy
for predicting the nonlinear flutter response of anisotropic panels in hypersonic flow. To this
end, there were three global objectives. The first objective was to develop and validate a large-
amplitude free vibration linearizing method. Second to assess the effects of the full nonlinear
third-order piston theory aerodynamics, the objective was to develop and implement a solution
method to solve the nonstandard, nonlinear eigenvalue problem. This objective also allows for
the solution of large-amplitude, nonlinear damping free vibrating panels. The final objective
was to combine the other two goals and extend the finite element formulation to include the
anisotropic laminated plate theory to evaluate the large-amplitude fluttering composite panel
in hypersonic flow. All of these objectives were achieved and thoroughly investigated using
the proposed solution method. The proposed solution method develops the nonlinear stiffness
and nonlinear aerodynamic influence matrices, linearizes the nonlinear matrices, transforms the
problem formulation from the configuration space to the state space, then solves, in an iterative
manner, the general eigenvalue problem. A computational solution procedure was developed.
This procedure introduced a linearization technique for the nonlinear, displacement dependent
stiffness, aerodynamic influence, and aerodynamic damping matrices.

The solution of the large-amplitude panel flutter problem, including anisotropic material
behavior and unsteady displacement and velocity dependent aerodynamics, is the first finite
element solution technique to include all of these effects. Numerical examples and discussion
of results were to provide complete confidence in the numerical procedure and method and to

also present flutter results for three-dimensional composite panels.

6.2 Future Work
The analysis presented in this study is not considered to be complete. Further work is
recommended, and needed, to more adequately describe the aerodynamic loads. In the advent
that more advanced aerodynamic theories become available the approach as outlined in this
study will easily handle them. The degree of nonlinearity found in the implementation of the
full third-order piston aerodynamic theory, displacement- and velocity-dependent loads, suggest
that a more advanced nonlinear aerodynamic theory can most certainty be handled using the

proposed method.
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APPENDIX A

DERIVATION OF THIRD-ORDER PISTON THEORY
AERODYNAMICS

In Chapter 2, the final form of the aerodynamic theory used in this study is presented.
The purpose of this appendix is to present a simplified derivation of the complete third-order
expansion that is shown in Eq. (2.8). The assumptions that are used in deriving this analytical

tool are:
1) The local motion of the panel behaves like a piston (law of plane sections holds).

2) During the panel’s motion, the fluid process is ideal, isentropic, and has a constant

specific heat.

3) The local panel velocity, dw, is considerably less than the horizontal component of the

free-stream velocity.
4) The fluid flow is parallel to the panel in the positive z-direction.

Piston theory aerodynamics is derived from the ideal wave propagation in a fluid disturbed
by the motion of a moving surface, see Fig. A.1. For an ideal gas, the local motion of the panel,
dw, produces a sonic wave that propagates with sonic velocity, V,, through the fluid. After the
wave has passed, the properties of the fluid have changed an infinitesimal amount (dp, dpg, dh);

and the fluid is moving toward the wave front with velocity dw.

The process as seen by a fixed observer moving with the wave front sees the fluid moving

into the control surface at velocity, V., and exiting at velocity, V; — dw.

Expanding the continuity equation across the control surface and neglecting higher order
differentials will yield a relationship for the sonic velocity of the fluid

Vedps — pdiv = 0 (A.1)
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Next, consider the momentum equation,

_ smvy)
Z F; = ot (A.2)

where F; is the z-component of the force and V; is the z-component of the fluid velocity.

Summing the 2-momentum equation over the control surface and solving for dw yields,
dp = paVedw (A.3)

Solving (A.1) with (A.3) yields an expression for the sonic velocity

dp
Vi= -2 A.da
[ d Pa ( )
or for an isentropic process,
V2= (-a-’L) Adb
€ 0pa/ s ( )
For constant specific heat ratio, v, and isentropic, ideal gas, thermodynamics give
(i) _2P (A5)
Opa)s Pa

Combining Eqs. (A.4) and (A.5) will give an expression for the sonic velocity in terms of

the free stream flow properties.

=22 (A.6)
Pa

Equation (A.5) can be integrated across the sonic wave as two separate states and solved using

the notation that subscript o is to represent the free-stream properties. This leads to

1

Pa = Pao (1) ! (A7)
Po
From Eq. (A.6), the free-stream sonic velocity is

V2= 1P (A.8)

or

y=v2le (A.9)
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Using Eq. (A.3) with (A.6)—(A.9), integrating across the sonic wave from p to p, and w to
0 (the far field z-component of the free-stream flow is assumed to be zero), yields the “long

established acoustic relationship”, [12]
(A.10)
Equation (A.10) defines the pressure on the face of a moving surface with velocity w in an
isentropic, ideal fluid.

Next, since w < Ve, Eq. (A.10) can be expanded using the binomial theorem

7,(7,2— ) 2, 0= 13)'(71 N (A.11)

Q+x)"=1+ 0 T+
which is complete up to order three. Here the term 7x would be, using Eq. (A.10), the first
order expansion.

Letting
n=—21 (A.12)

and
y—1w
X = ( 5 Vw) (A.13)

and using Eq. (A.9) for v, then recalling that the free-stream velocity has only a z-component
when calculating the total derivative of 1 along with using Eq. (A.11) into Eq. (A.10) results

in the full third-order piston aerodynamic theory as shown in Eq. (2.8).
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Fig. A.1 Piston Theory Aerodynamics.
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APPENDIX B

DERIVATION OF THREE-DIMENSIONAL PLATE ELEMENT
MATRIX

The rectangular composite plate element chosen for the nonlinear vibration and panel flutter
analyses is a conforming element which has six displacements at each corner node, see Fig. B.1.
The nodal displacements are: two in-plane, u and v, and the transverse deflection w and its
derivatives w,z, w,y, and w,zy at each node for a total of 24 degrees-of-freedom per element.

The element degrees-of-freedom are represented by the vector {A} as

Aw
{A} =4 Du (B.1)
Av A
where the bending and membrane displacements, as shown in Fig. B.1 are
{Aw}T = (‘w1, W2, W3, Wy, Wiz -, Wiyy- -+, Wlzy, -+ why) (B2)
{Au}T = (uy,u,u3, ug) (B.3)
{Av}T = (v1,vy,v3,v9) (B.4)

The transverse and in-plane displacements within the rectangular plate element are assumed

to be
w=(lzyz? zy y° 2° 22y oy? y° 2By 2%? o 23y? 2% ) () (B.5)
u= (1zyzy){m} (B.6)
v = (Lzyzy){m) (B7)

where z and y are the element coordinates. The 24 generalized coordinates

{nw} = (Mw1s Tw2y - - -, Twis) (B.8)
{Tlu} = (77u1, Mu2s Mu3s 77u4) (Bg)
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{7’0} = (7’01, N2, Mv3, 1704)

are related to the element displacements

{Aw} = [Dy){mo}

{Au} = [Dpu]{mu}
{Av} = [Dp]{nv}

Solving Egs. (B.11)—(B.13), and putting the results into Egs. (B.5)—(B.7), yields,

w = [pu]{Aw}
u = [¢y]{Au}
v = [¢y]{Av}

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

which relates the field equations to the discrete nodal quantities using interpolation functions,

[$w]; [#u], and [py].
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Fig. B.1 3-D Laminated Plate Finite Element.
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APPENDIX C

TIME AND SPACE FUNCTIONS APPROXIMATIONS

For synchronous motion the nonlinear quadratic, f2(t), and cubic, f3(t), time functions
need to be appraximated over a limit-cycle oscillation. These functions, f2(t) and f3(t), are
defined as follows:

1.1 b
f2(t) ={ 5+ 7 cos(2w t) os(w t)
(2 2 ) ’ (C.1)

£3(6) = 7 (8 cos(w 1) +cos(3w 1))
where the linear frequency (w = wy,wp,ws,...) illustrated in Fig. 5.7 is iterated for a particular
mode shape as shown in Fig. 5.8. If the higher order harmonics in Eqgs. (C.1) are neglected,
then the linearized time functions, F2(t) and F3(t) can be estimated as follows:

F2(t) = ﬁ cos(w t)

2 (C2)
F3(t) = gcos(w £)
Thus during the iterative procedure, Eq. (C.1) is approximated as follows:
f2(t) = F2(t)
(C.3)
F3(t) = F3(t)

These approximations over a limit-cycle are shown in Fig. C.1 where the variations are

reasonable approximations of the nonlinear tirue function.

A comparison of the single space mode approximation can be assessed by performing a
fourier analysis of the converged limit-cycle deflected shape for a two-dimensional panel. The
converged deflected shape is shown in Fig. C.2(a) and Fig. 5.3. Decomposing the flutter shape
into its linear mode shapes,

w(z,t) = cos(w t) Zan sin(nrz/a) (C.49)
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results in the coefficients, ay,, as shown in Table C.1 for the first eleven linear modes. As can be
seen, the major modal participation for the two-dimensional panel is contained in the first five
linear modes and are shown in Figs. C.2 (b)-(f). Thus, the proposed single mode linearizing

method is equivalent to a multi-mode approach.

Table C.1 Linear Mode Shape

Participation Factors

3

an

+0.5382
—0.5172
+0.1602
—0.0333
+0.0125
—-0.0033
+0.0016
-0.0007
+0.0005
—0.0002
+0.0002

HOOWOW=-IO0U AW =

P
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