6 research outputs found

    Capturing of organic carbon and nitrogen in eelgrass sediments of southern Scandinavia

    Get PDF
    The ability of seagrass meadows to filter nutrients and capture and store CO2 and nutrients in the form of organic carbon (OC) and nitrogen (N) in their sediments may help to mitigate local eutrophication as well as climate change via meadow restoration and protection. This study assesses OC and N sediment stocks (top 50 cm) and sequestration rates within Danish eelgrass meadows. At four locations, eelgrass-vegetated and nearby unvegetated plots were studied in protected and exposed areas. The average OC and N sediment 50 cm stocks were 2.6 ± 0.3 kg OC m − 2 and 0.23 ± 0.01 kg N m − 2, including vegetated and unvegetated plots. In general, OC and N stocks did not differ significantly between eelgrass meadows and unvegetated sediments. Lack of accumulation of excess 210Pb suggested sediment erosion or low rates of sediment accumulation at most sites. OC accumulation rates ranged from 6 to 134 g m − 2 yr − 1 and N from 0.7 to 14 g m − 2 yr − 1. Generalized additive models showed that ≥ 80 % of the variation in sediment OC and N stocks was explained by sediment grain size, organic matter source, and hydrodynamic exposure. Long cores, dated with 210Pb, showed declining OC and N densities toward present time, suggesting long-term declines in eelgrass OC and N pools. Estimates of potential nation-wide OC and N accumulation in eelgrass sediments show that they could annually capture up to 0.7 % ± 0.5 % of CO2 emissions and 6.9 % ± 5.2 % of the total terrestrial N load

    Region-specific drivers cause low organic carbon stocks and sequestration rates in the saltmarsh soils of southern Scandinavia

    Get PDF
    Saltmarshes are known for their ability to act as effective sinks of organic carbon (OC) and their protection and restoration could potentially slow down the pace of global warming. However, regional estimates of saltmarsh OC storage are often missing, including for the Nordic region. To address this knowledge gap, we assessed OC storage and accumulation rates in 17 saltmarshes distributed along the Danish coasts and investigated the main drivers of soil OC storage. Danish saltmarshes store a median of 10 kg OC m−2 (interquartile range, IQR: 13.5–7.6) in the top meter and sequester 31.5 g OC m−2 yr−1 (IQR: 41.6–15.7). In a global context, these values are comparatively low. Soils with abundant clay (&gt; 20%), older and stable saltmarshes in mesohaline settings, and with low proportion of algal organic material showed higher OC densities, stocks, and accumulation rates. Grazing led to significantly higher OC stocks than neighboring ungrazed locations, likely due to trampling modifying soil abiotic conditions (higher erosion-resistance and higher clay content) that slow carbon decay. Scaling up, Danish saltmarsh soils, comprising about 1% of the country's area, have the potential to yearly capture up to 0.1% of Denmark's annual consumption-based CO2 emissions. Our research expands the baseline data needed to advance blue carbon research and management in the Nordic region while highlighting the need for a more comprehensive approach to saltmarsh management that considers the full range of services of these ecosystems and does not only focus on climate benefits.</p

    Dataset used in "Capturing of Organic Carbon and Nitrogen in Eelgrass Sediments of Southern Scandinavia"

    No full text
    Raw data used in the paper by Leiva-Dueñas et al. 2022  "Capturing of Organic Carbon and Nitrogen in Eelgrass Sediments of Southern Scandinavia". This study assesses OC and nitrogen (N) sediment stocks (top 50 cm) and accumulation rates within Danish eelgrass meadows. At four locations, eelgrass-vegetated and nearby unvegetated plots were studied in protected and exposed areas.   The first tab of the file explains in detal the information that can be found in the document. </p

    Nordic Blue Carbon Ecosystems: Status and Outlook

    No full text
    Vegetated coastal and marine habitats in the Nordic region include salt marshes, eelgrass meadows and, in particular, brown macroalgae (kelp forests and rockweed beds). Such habitats contribute to storage of organic carbon (Blue Carbon – BC) and support coastal protection, biodiversity and water quality. Protection and restoration of these habitats therefore have the potential to deliver climate change mitigation and co-benefits. Here we present the existing knowledge on Nordic BC habitats in terms of habitat area, C-stocks and sequestration rates, co-benefits, policies and management status to inspire a coherent Nordic BC roadmap. The area extent of BC habitats in the region is incompletely assessed, but available information sums up to 1,440 km2 salt marshes, 1,861 (potentially 2,735) km2 seagrass meadows, and 16,532 km2 (potentially 130,735 km2, including coarse Greenland estimates) brown macroalgae, yielding a total of 19,833 (potentially 134,910) km2. Saltmarshes and seagrass meadows have experienced major declines over the past century, while macroalgal trends are more diverse. Based on limited salt marsh data, sediment C-stocks average 3,311 g Corg m-2 (top 40-100 cm) and sequestration rates average 142 g Corg m-2 yr-1. Eelgrass C-stocks average 2,414 g Corg m-2 (top 25 cm) and initial data for sequestration rates range 5-33 g Corg m-2, quantified for one Greenland site and one short term restoration. For Nordic brown macroalgae, peer-reviewed estimates of sediment C-stock and sequestration are lacking. Overall, the review reveals substantial Nordic BC-stocks, but highlights that evidence is still insufficient to provide a robust estimate of all Nordic BC-stocks and sequestration rates. Needed are better quantification of habitat area, C-stocks and fluxes, particularly for macroalgae, as well as identification of target areas for BC management. The review also points to directives and regulations protecting Nordic marine vegetation, and local restoration initiatives with potential to increase C-sequestration but underlines that increased coordination at national and Nordic scales and across sectors is needed. We propose a Nordic BC roadmap for science and management to maximize the potential of BC habitats to mitigate climate change and support coastal protection, biodiversity and additional ecosystem functions

    Nordic Blue Carbon Ecosystems: Status and Outlook

    No full text
    Vegetated coastal and marine habitats in the Nordic region include salt marshes, eelgrass meadows and, in particular, brown macroalgae (kelp forests and rockweed beds). Such habitats contribute to storage of organic carbon (Blue Carbon – BC) and support coastal protection, biodiversity and water quality. Protection and restoration of these habitats therefore have the potential to deliver climate change mitigation and co-benefits. Here we present the existing knowledge on Nordic BC habitats in terms of habitat area, C-stocks and sequestration rates, co-benefits, policies and management status to inspire a coherent Nordic BC roadmap. The area extent of BC habitats in the region is incompletely assessed, but available information sums up to 1,440 km2 salt marshes, 1,861 (potentially 2,735) km2 seagrass meadows, and 16,532 km2 (potentially 130,735 km2, including coarse Greenland estimates) brown macroalgae, yielding a total of 19,833 (potentially 134,910) km2. Saltmarshes and seagrass meadows have experienced major declines over the past century, while macroalgal trends are more diverse. Based on limited salt marsh data, sediment C-stocks average 3,311 g Corg m-2 (top 40-100 cm) and sequestration rates average 142 g Corg m-2 yr-1. Eelgrass C-stocks average 2,414 g Corg m-2 (top 25 cm) and initial data for sequestration rates range 5-33 g Corg m-2, quantified for one Greenland site and one short term restoration. For Nordic brown macroalgae, peer-reviewed estimates of sediment C-stock and sequestration are lacking. Overall, the review reveals substantial Nordic BC-stocks, but highlights that evidence is still insufficient to provide a robust estimate of all Nordic BC-stocks and sequestration rates. Needed are better quantification of habitat area, C-stocks and fluxes, particularly for macroalgae, as well as identification of target areas for BC management. The review also points to directives and regulations protecting Nordic marine vegetation, and local restoration initiatives with potential to increase C-sequestration but underlines that increased coordination at national and Nordic scales and across sectors is needed. We propose a Nordic BC roadmap for science and management to maximize the potential of BC habitats to mitigate climate change and support coastal protection, biodiversity and additional ecosystem functions

    Nordic Blue Carbon Ecosystems:Status and Outlook

    Get PDF
    Vegetated coastal and marine habitats in the Nordic region include salt marshes, eelgrass meadows and, in particular, brown macroalgae (kelp forests and rockweed beds). Such habitats contribute to storage of organic carbon (Blue Carbon – BC) and support coastal protection, biodiversity and water quality. Protection and restoration of these habitats therefore have the potential to deliver climate change mitigation and co-benefits. Here we present the existing knowledge on Nordic BC habitats in terms of habitat area, C-stocks and sequestration rates, co-benefits, policies and management status to inspire a coherent Nordic BC roadmap. The area extent of BC habitats in the region is incompletely assessed, but available information sums up to 1,440 km2 salt marshes, 1,861 (potentially 2,735) km2 seagrass meadows, and 16,532 km2 (potentially 130,735 km2, including coarse Greenland estimates) brown macroalgae, yielding a total of 19,833 (potentially 134,910) km2. Saltmarshes and seagrass meadows have experienced major declines over the past century, while macroalgal trends are more diverse. Based on limited salt marsh data, sediment C-stocks average 3,311 g Corg m-2 (top 40-100 cm) and sequestration rates average 142 g Corg m-2 yr-1. Eelgrass C-stocks average 2,414 g Corg m-2 (top 25 cm) and initial data for sequestration rates range 5-33 g Corg m-2, quantified for one Greenland site and one short term restoration. For Nordic brown macroalgae, peer-reviewed estimates of sediment C-stock and sequestration are lacking. Overall, the review reveals substantial Nordic BC-stocks, but highlights that evidence is still insufficient to provide a robust estimate of all Nordic BC-stocks and sequestration rates. Needed are better quantification of habitat area, C-stocks and fluxes, particularly for macroalgae, as well as identification of target areas for BC management. The review also points to directives and regulations protecting Nordic marine vegetation, and local restoration initiatives with potential to increase C-sequestration but underlines that increased coordination at national and Nordic scales and across sectors is needed. We propose a Nordic BC roadmap for science and management to maximize the potential of BC habitats to mitigate climate change and support coastal protection, biodiversity and additional ecosystem functions.publishedVersio
    corecore