234 research outputs found

    Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing of mutually exclusive exons is an important mechanism for increasing protein diversity in eukaryotes. The insect <it>Mhc </it>(myosin heavy chain) gene produces all different muscle myosins as a result of alternative splicing in contrast to most other organisms of the Metazoa lineage, that have a family of muscle genes with each gene coding for a protein specialized for a functional niche.</p> <p>Results</p> <p>The muscle myosin heavy chain genes of 22 species of the Arthropoda ranging from the waterflea to wasp and <it>Drosophila </it>have been annotated. The analysis of the gene structures allowed the reconstruction of an ancient muscle myosin heavy chain gene and showed that during evolution of the arthropods introns have mainly been lost in these genes although intron gain might have happened in a few cases. Surprisingly, the genome of <it>Aedes aegypti </it>contains another and that of <it>Culex pipiens quinquefasciatus </it>two further muscle myosin heavy chain genes, called <it>Mhc3 </it>and <it>Mhc4</it>, that contain only one variant of the corresponding alternative exons of the <it>Mhc1 </it>gene. <it>Mhc3 </it>transcription in <it>Aedes aegypti </it>is documented by EST data. <it>Mhc3 </it>and <it>Mhc4 </it>inserted in the <it>Aedes </it>and <it>Culex </it>genomes either by gene duplication followed by the loss of all but one variant of the alternative exons, or by incorporation of a transcript of which all other variants have been spliced out retaining the exon-intron structure. The second and more likely possibility represents a new type of a 'partially' processed pseudogene.</p> <p>Conclusion</p> <p>Based on the comparative genomic analysis of the alternatively spliced arthropod muscle myosin heavy chain genes we propose that the splicing process operates sequentially on the transcript. The process consists of the splicing of the mutually exclusive exons until one exon out of the cluster remains while retaining surrounding intronic sequence. In a second step splicing of introns takes place. A related mechanism could be responsible for the splicing of other genes containing mutually exclusive exons.</p

    Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3

    Get PDF
    Background: Alternative splicing (AS) of maturing mRNA can generate structurally and functionally distinct transcripts from the same gene. Recent bioinformatic analyses of available genome databases inferred a positive correlation between intron length and AS. To study the interplay between intron length and AS empirically and in more detail, we analyzed the diversity of alternatively spliced transcripts (ASTs) in the Drosophila RNA-binding Bruno-3 (Bru-3) gene. This gene was known to encode thirteen exons separated by introns of diverse sizes, ranging from 71 to 41,973 nucleotides in D. melanogaster. Although Bru-3's structure is expected to be conducive to AS, only two ASTs of this gene were previously described. Results: Cloning of RT-PCR products of the entire ORF from four species representing three diverged Drosophila lineages provided an evolutionary perspective, high sensitivity, and long-range contiguity of splice choices currently unattainable by high-throughput methods. Consequently, we identified three new exons, a new exon fragment and thirty-three previously unknown ASTs of Bru-3. All exon-skipping events in the gene were mapped to the exons surrounded by introns of at least 800 nucleotides, whereas exons split by introns of less than 250 nucleotides were always spliced contiguously in mRNA. Cases of exon loss and creation during Bru-3 evolution in Drosophila were also localized within large introns. Notably, we identified a true de novo exon gain: exon 8 was created along the lineage of the obscura group from intronic sequence between cryptic splice sites conserved among all Drosophila species surveyed. Exon 8 was included in mature mRNA by the species representing all the major branches of the obscura group. To our knowledge, the origin of exon 8 is the first documented case of exonization of intronic sequence outside vertebrates. Conclusion: We found that large introns can promote AS via exon-skipping and exon turnover during evolution likely due to frequent errors in their removal from maturing mRNA. Large introns could be a reservoir of genetic diversity, because they have a greater number of mutable sites than short introns. Taken together, gene structure can constrain and/or promote gene evolution

    Deletion of the N-terminus of SF2/ASF Permits RS-Domain-Independent Pre-mRNA Splicing

    Get PDF
    Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing

    ProbFAST: Probabilistic Functional Analysis System Tool

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis.</p> <p>Results</p> <p>We proposed a web platform named ProbFAST for MDE analysis which uses Bayesian inference to identify key genes that are intuitively prioritized by means of probabilities. A simulated study revealed that our method gives a better performance when compared to other approaches and when applied to public expression data, we demonstrated its flexibility to obtain relevant genes biologically associated with normal and abnormal biological processes.</p> <p>Conclusions</p> <p>ProbFAST is a free accessible web-based application that enables MDE analysis on a global scale. It offers an efficient methodological approach for MDE analysis of a set of genes that are turned on and off related to functional information during the evolution of a tumor or tissue differentiation. ProbFAST server can be accessed at <url>http://gdm.fmrp.usp.br/probfast</url>.</p

    Interplay between Exonic Splicing Enhancers, mRNA Processing, and mRNA Surveillance in the Dystrophic Mdx Mouse

    Get PDF
    BACKGROUND: Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5′ and 3′ splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern. The mdx mouse, a commonly used genetic model for Duchenne muscular dystrophy (DMD), lacks dystrophin by virtue of a premature termination codon (PTC) in exon 23 that also severely reduces the level of dystrophin mRNA. However, the effect of the mutation on dystrophin RNA processing has not yet been described. METHODOLOGY/PRINCIPAL FINDING: Using combinations of different biochemical and cellular assays, we found that the mdx mutation partially disrupts a multisite exonic splicing enhancer (ESE) that is recognized by a 40 kDa SR protein. In spite of the presence of an inefficient intron 22 3′ splice site containing the rare GAG triplet, the mdx mutation does not activate nonsense-associated altered splicing (NAS), but induces exclusively nonsense-mediated mRNA decay (NMD). Functional binding sites for SR proteins were also identified in exon 22 and 24, and in vitro experiments show that SR proteins can mediate direct association between exon 22, 23, and 24. CONCLUSIONS/SIGNIFICANCE: Our findings highlight the complex crosstalk between trans-acting factors, cis-elements and the RNA surveillance machinery occurring during dystrophin mRNA processing. Moreover, they suggest that dystrophin exon–exon interactions could play an important role in preventing mdx exon 23 skipping, as well as in facilitating the pairing of committed splice sites

    Conserved Expression Patterns Predict microRNA Targets

    Get PDF
    microRNAs (miRNAs) are major regulators of gene expression and thereby modulate many biological processes. Computational methods have been instrumental in understanding how miRNAs bind to mRNAs to induce their repression but have proven inaccurate. Here we describe a novel method that combines expression data from human and mouse to discover conserved patterns of expression between orthologous miRNAs and mRNA genes. This method allowed us to predict thousands of putative miRNA targets. Using the luciferase reporter assay, we confirmed 4 out of 6 of our predictions. In addition, this method predicted many miRNAs that act as expression enhancers. We show that many miRNA enhancer effects are mediated through the repression of negative transcriptional regulators and that this effect could be as common as the widely reported repression activity of miRNAs. Our findings suggest that the indirect enhancement of gene expression by miRNAs could be an important component of miRNA regulation that has been widely neglected to date

    Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen <i>Pectobacterium atrosepticum</i>

    Get PDF
    BACKGROUND: Small RNAs (sRNAs) have emerged as important regulatory molecules and have been studied in several bacteria. However, to date, there have been no whole-transcriptome studies on sRNAs in any of the Soft Rot Enterobacteriaceae (SRE) group of pathogens. Although the main ecological niches for these pathogens are plants, a significant part of their life cycle is undertaken outside their host within adverse soil environment. However, the mechanisms of SRE adaptation to this harsh nutrient-deficient environment are poorly understood. RESULTS: In the study reported herein, by using strand-specific RNA-seq analysis and in silico sRNA predictions, we describe the sRNA pool of Pectobacterium atrosepticum and reveal numerous sRNA candidates, including those that are induced during starvation-activated stress responses. Consequently, strand-specific RNA-seq enabled detection of 137 sRNAs and sRNA candidates under starvation conditions; 25 of these sRNAs were predicted for this bacterium in silico. Functional annotations were computationally assigned to 68 sRNAs. The expression of sRNAs in P. atrosepticum was compared under growth-promoting and starvation conditions: 68 sRNAs were differentially expressed with 47 sRNAs up-regulated under nutrient-deficient conditions. Conservation analysis using BLAST showed that most of the identified sRNAs are conserved within the SRE. Subsequently, we identified 9 novel sRNAs within the P. atrosepticum genome. CONCLUSIONS: Since many of the identified sRNAs are starvation-induced, the results of our study suggests that sRNAs play key roles in bacterial adaptive response. Finally, this work provides a basis for future experimental characterization and validation of sRNAs in plant pathogens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2376-0) contains supplementary material, which is available to authorized users

    Dynamics of Co-Transcriptional Pre-mRNA Folding Influences the Induction of Dystrophin Exon Skipping by Antisense Oligonucleotides

    Get PDF
    Antisense oligonucleotides (AONs) mediated exon skipping offers potential therapy for Duchenne muscular dystrophy. However, the identification of effective AON target sites remains unsatisfactory for lack of a precise method to predict their binding accessibility. This study demonstrates the importance of co-transcriptional pre-mRNA folding in determining the accessibility of AON target sites for AON induction of selective exon skipping in DMD. Because transcription and splicing occur in tandem, AONs must bind to their target sites before splicing factors. Furthermore, co-transcriptional pre-mRNA folding forms transient secondary structures, which redistributes accessible binding sites. In our analysis, to approximate transcription elongation, a “window of analysis” that included the entire targeted exon was shifted one nucleotide at a time along the pre-mRNA. Possible co-transcriptional secondary structures were predicted using the sequence in each step of transcriptional analysis. A nucleotide was considered “engaged” if it formed a complementary base pairing in all predicted secondary structures of a particular step. Correlation of frequency and localisation of engaged nucleotides in AON target sites accounted for the performance (efficacy and efficiency) of 94% of 176 previously reported AONs. Four novel insights are inferred: (1) the lowest frequencies of engaged nucleotides are associated with the most efficient AONs; (2) engaged nucleotides at 3′ or 5′ ends of the target site attenuate AON performance more than at other sites; (3) the performance of longer AONs is less attenuated by engaged nucleotides at 3′ or 5′ ends of the target site compared to shorter AONs; (4) engaged nucleotides at 3′ end of a short target site attenuates AON efficiency more than at 5′ end

    Computational Biology Methods and Their Application to the Comparative Genomics of Endocellular Symbiotic Bacteria of Insects

    Get PDF
    Comparative genomics has become a real tantalizing challenge in the postgenomic era. This fact has been mostly magnified by the plethora of new genomes becoming available in a daily bases. The overwhelming list of new genomes to compare has pushed the field of bioinformatics and computational biology forward toward the design and development of methods capable of identifying patterns in a sea of swamping data noise. Despite many advances made in such endeavor, the ever-lasting annoying exceptions to the general patterns remain to pose difficulties in generalizing methods for comparative genomics. In this review, we discuss the different tools devised to undertake the challenge of comparative genomics and some of the exceptions that compromise the generality of such methods. We focus on endosymbiotic bacteria of insects because of their genomic dynamics peculiarities when compared to free-living organisms
    corecore