6 research outputs found

    SOPHIE velocimetry of Kepler transit candidates XII. KOI-1257 b: a highly eccentric three-month period transiting exoplanet

    Full text link
    In this paper we report a new transiting warm giant planet: KOI-1257 b. It was first detected in photometry as a planet-candidate by the Kepler{\it Kepler} space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661 d ±\pm 3 s and a high eccentricity of 0.772 ±\pm 0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99 ±\pm 0.05 Msun and 0.70 ± \pm 0.07 Msun for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler{\it Kepler} transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45 ± \pm 0.35 Mjup, and a radius of 0.94 ± \pm 0.12 Rjup, and thus a bulk density of 2.1 ± \pm 1.2 g.cm−3^{-3}. The planet has an equilibrium temperature of 511 ±\pm 50 K, making it one of the few known members of the warm-jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257 b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet.Comment: 39 pages, 17 figures, accepted for publication in Astronomy & Astrophysic

    Photometric and spectroscopic detection of the primary transit of the 111-day-period planet HD 80606 b

    Full text link
    We report the detection of the primary transit of the extra-solar planet HD 80606 b, thanks to photometric and spectroscopic observations performed at Observatoire de Haute-Provence, simultaneously with the CCD camera at the 120-cm telescope and the SOPHIE spectrograph at the 193-cm telescope. We observed the whole egress of the transit and partially its central part, in both data sets with the same timings. The ingress occurred before sunset and was not observed. The full duration of the transit was between 9.5 and 17.2 hours. The data allows the planetary radius to be measured (Rp = 0.9 +- 0.1 RJup) and other parameters of the system to be refined. Radial velocity measurements show the detection of a prograde Rossiter-McLaughlin effect, and provide a hint for a spin-orbit misalignment. If confirmed, this misalignment would corroborate the hypothesis that HD 80606 b owes its unusual orbital configuration to Kozai migration. HD 80606 b is by far the transiting planet on the longest period detected today. Its unusually small radius reinforces the observed relationship between the planet radius and the incident flux received from the star and opens new questions for theory. Orbiting a quite bright star (V=9), it opens opportunities to numerous follow-up studies.Comment: revised after acceptanc

    Minor Planet Observations [511 Haute Provence]

    No full text
    International audienceNot Availabl

    VizieR Online Data Catalog: KOI-1257 photometric and velocimetric data (Santerne+, 2014)

    No full text
    VizieR On-line Data Catalog: J/A+A/571/A37In this paper we report a new transiting warm giant planet: KOI-1257b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661d+/-3s and a high eccentricity of 0.772+/-0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99+/-0.05M⊙ and 0.70+/-0.07M⊙ for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45+/-0.35Mjup, and a radius of 0.94+/-0.12Rjup, and thus a bulk density of 2.1+/-1.2g/cm3. The planet has an equilibrium temperature of 511+/-50K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet. (3 data files)

    VizieR Online Data Catalog: KOI-1257 photometric and velocimetric data (Santerne+, 2014)

    No full text
    VizieR On-line Data Catalog: J/A+A/571/A37In this paper we report a new transiting warm giant planet: KOI-1257b. It was first detected in photometry as a planet-candidate by the Kepler space telescope and then validated thanks to a radial velocity follow-up with the SOPHIE spectrograph. It orbits its host star with a period of 86.647661d+/-3s and a high eccentricity of 0.772+/-0.045. The planet transits the main star of a metal-rich, relatively old binary system with stars of mass of 0.99+/-0.05M⊙ and 0.70+/-0.07M⊙ for the primary and secondary, respectively. This binary system is constrained thanks to a self-consistent modelling of the Kepler transit light curve, the SOPHIE radial velocities, line bisector and full-width half maximum (FWHM) variations, and the spectral energy distribution. However, future observations are needed to confirm it. The PASTIS fully-Bayesian software was used to validate the nature of the planet and to determine which star of the binary system is the transit host. By accounting for the dilution from the binary both in photometry and in radial velocity, we find that the planet has a mass of 1.45+/-0.35Mjup, and a radius of 0.94+/-0.12Rjup, and thus a bulk density of 2.1+/-1.2g/cm3. The planet has an equilibrium temperature of 511+/-50K, making it one of the few known members of the warm-Jupiter population. The HARPS-N spectrograph was also used to observe a transit of KOI-1257b, simultaneously with a joint amateur and professional photometric follow-up, with the aim of constraining the orbital obliquity of the planet. However, the Rossiter-McLaughlin effect was not clearly detected, resulting in poor constraints on the orbital obliquity of the planet. (3 data files)
    corecore