22 research outputs found

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al

    MR fluoroscopy in vascular and cardiac interventions (review)

    Get PDF
    Vascular and cardiac disease remains a leading cause of morbidity and mortality in developed and emerging countries. Vascular and cardiac interventions require extensive fluoroscopic guidance to navigate endovascular catheters. X-ray fluoroscopy is considered the current modality for real time imaging. It provides excellent spatial and temporal resolution, but is limited by exposure of patients and staff to ionizing radiation, poor soft tissue characterization and lack of quantitative physiologic information. MR fluoroscopy has been introduced with substantial progress during the last decade. Clinical and experimental studies performed under MR fluoroscopy have indicated the suitability of this modality for: delivery of ASD closure, aortic valves, and endovascular stents (aortic, carotid, iliac, renal arteries, inferior vena cava). It aids in performing ablation, creation of hepatic shunts and local delivery of therapies. Development of more MR compatible equipment and devices will widen the applications of MR-guided procedures. At post-intervention, MR imaging aids in assessing the efficacy of therapies, success of interventions. It also provides information on vascular flow and cardiac morphology, function, perfusion and viability. MR fluoroscopy has the potential to form the basis for minimally invasive image–guided surgeries that offer improved patient management and cost effectiveness

    Reduced leucocyte cholesteryl ester transfer protein expression in acute coronary syndromes

    No full text
    OBJECTIVE: Cholesterol ester transfer protein (CETP) plays an important role in HDL cholesterol metabolism. Leucocytes, including monocyte-derived macrophages in the arterial wall synthesize and secrete CETP, but its role in atherosclerosis is unclear. The aim of the current study was to investigate the effect of acute coronary syndromes (ACS) on leucocyte CETP expression. RESEARCH DESIGN: Peripheral blood mononuclear cells (PBMCs) were freshly isolated from hospitalized ACS patients displaying Braunwald class IIIB unstable angina pectoris (UAP) on admission (t = 0) and at 180 days post inclusion (t = 180) for analysis of CETP expression. In addition, to prove the potential correlation between leucocyte CETP and ACS the effect of acute myocardial infarction on leucocyte CETP expression was studied in CETP transgenic mice. RESULTS: Upon admission, UAP patients displayed approximately 3-6 fold (P < 0.01) lower CETP mRNA and nearly absent CETP protein expression in PBMCs, as compared to healthy age-/sex-matched controls. Interestingly, CETP mRNA and protein levels were significantly elevated in PBMCs isolated from UAP patients (both stabilized and refractory) at t = 180 as compared to t = 0 (P < 0.01), which was correlated with a reduced inflammatory status after medical treatment. In agreement with the data obtained in UAP patients, markedly down-regulated leucocyte CETP mRNA expression was observed after coronary artery ligation in CETP transgenic mice, which also correlated with increased serum amyloid A levels. CONCLUSIONS: We are the first to report that episodes of UAP in humans and myocardial infarction in CETP transgenic mice are associated with reduced leucocyte CETP expression. We propose that the impairment in leucocyte CETP production is associated with an enhanced inflammatory status, which could be clinically relevant for the pathogenesis of AC

    Preparation of Acellular Myocardial Scaffolds with Well-Preserved Cardiomyocyte Lacunae, and Method for Applying Mechanical and Electrical Simulation to Tissue Construct

    No full text
    Cardiac tissue engineering/regeneration using decellularized myocardium has attracted great research attention due to its potential benefit for myocardial infarction (MI) treatment. Here we describe an optimal decellularization protocol to generate 3D porcine myocardial scaffolds with well-preserved cardiomyocyte lacunae and a multi-stimulation bioreactor that is able to provide coordinated mechanical and electrical stimulation for facilitating cardiac construct development. © 2014 Springer Science+Business Media New York

    Development and external validation of prediction models to predict implantable cardioverter-defibrillator efficacy in primary prevention of sudden cardiac death

    No full text
    AIMS: This study was performed to develop and externally validate prediction models for appropriate implantable cardioverter-defibrillator (ICD) shock and mortality to identify subgroups with insufficient benefit from ICD implantation. METHODS AND RESULTS: We recruited patients scheduled for primary prevention ICD implantation and reduced left ventricular function. Bootstrapping-based Cox proportional hazards and Fine and Gray competing risk models with likely candidate predictors were developed for all-cause mortality and appropriate ICD shock, respectively. Between 2014 and 2018, we included 1441 consecutive patients in the development and 1450 patients in the validation cohort. During a median follow-up of 2.4 (IQR 2.1-2.8) years, 109 (7.6%) patients received appropriate ICD shock and 193 (13.4%) died in the development cohort. During a median follow-up of 2.7 (IQR 2.0-3.4) years, 105 (7.2%) received appropriate ICD shock and 223 (15.4%) died in the validation cohort. Selected predictors of appropriate ICD shock were gender, NSVT, ACE/ARB use, atrial fibrillation history, Aldosterone-antagonist use, Digoxin use, eGFR, (N)OAC use, and peripheral vascular disease. Selected predictors of all-cause mortality were age, diuretic use, sodium, NT-pro-BNP, and ACE/ARB use. C-statistic was 0.61 and 0.60 at respectively internal and external validation for appropriate ICD shock and 0.74 at both internal and external validation for mortality. CONCLUSION: Although this cohort study was specifically designed to develop prediction models, risk stratification still remains challenging and no large group with insufficient benefit of ICD implantation was found. However, the prediction models have some clinical utility as we present several scenarios where ICD implantation might be postponed
    corecore