4,626 research outputs found

    Effect of Polyethylene Glycol Treatment on Acetic Acid Emissions from Wood

    Get PDF
    Acetic acid is known to be emitted from sound wood and can accelerate damage to heritage materials, particularly metals. However, few studies have investigated the extent of acetic acid emissions from archaeological wood. This research utilised Solid-Phase-Micro-Extraction (SPME) GC–MS and lead coupon corrosion to identify volatile emissions from polyethylene glycol (PEG)-treated archaeological wood from the Mary Rose collection and assess if they could cause accelerated damage. In addition, the effect of PEG treatment on acetic acid emissions was investigated using sound wood samples. For sound wood, the PEG treatment acted as a barrier to acetic acid emissions, with higher-molecular-weight PEGs preventing more emissions. Archaeological wood, despite its age and high-molecular-weight PEG treatment, still emitted detectable concentrations of acetic acid. Moreover, they emitted a wider array of compounds compared to sound wood, including carbon disulphide. Like sound wood, when the archaeological wood samples were in a sealed environment with lead coupons, they caused accelerated corrosion to lead. This evidences that archaeological wood can emit high enough concentrations of volatile compounds to cause damage and further investigation should be performed to evaluate if this can occur inside museum display cases

    The Brain Microvascular Endothelium Supports T Cell Proliferation and Has Potential for Alloantigen Presentation

    Get PDF
    Endothelial cells (EC) form the inner lining of blood vessels and are positioned between circulating lymphocytes and tissues. Hypotheses have formed that EC may act as antigen presenting cells based on the intimate interactions with T cells, which are seen in diseases like multiple sclerosis, cerebral malaria (CM) and viral neuropathologies. Here, we investigated how human brain microvascular EC (HBEC) interact with and support the proliferation of T cells. We found HBEC to express MHC II, CD40 and ICOSL, key molecules for antigen presentation and co-stimulation and to take up fluorescently labeled antigens via macropinocytosis. In co-cultures, we showed that HBEC support and promote the proliferation of CD4+ and CD8+ T cells, which both are key in CM pathogenesis, particularly following T cell receptor activation and co-stimulation. Our findings provide novel evidence that HBEC can trigger T cell activation, thereby providing a novel mechanism for neuroimmunological complications of infectious diseases. © 2013 Wheway et al

    Low energy LIDARs for biomass applications

    Get PDF
    SilviLaser 2015, La Grande Motte, FRA, 28-/09/2015 - 30/09/2015International audienceA new approach for LIDAR altimetry mission for biomass applications ( tree height measurement ) is explored based on low emitted laser energy at high repetition fr equency. Low energy approach drastical ly reduces the laser induced risks. Altimetry performances meet preliminary science requirements . The proposed instrument design is compatible with a space mission

    AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    Get PDF
    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity

    Modelling and performance evaluation of storage enclosures

    Get PDF
    A model of moisture and heat transport was used to study the performance of storage enclosures. This paper examines several modelling approaches and presents the benefits and drawbacks of a ‘simple’ model which requires few input parameters. As a result, users do not need to measure many material properties, but some quality of the predictions is lost. The model is used to explore the balance of moisture exchange through ventilation holes and diffusion, the presence of buffering material inside enclosures and the effect of wall thickness. The predictions correspond well to experimental data measured in storage enclosures and a historic building. However, in order to bring modelling to the point where it can be used to engineer better enclosures, further research is needed. Experimental validation needs to be extensive and the limits of applicability of the model need to be clearly identified

    ENOBIO - First tests of a dry electrophysiology electrode using carbon nanotubes

    Get PDF
    We describe the development and first tests of Enobio, a dry electrode sensor concept for biopotential applications. In the proposed electrodes, the tip of the electrode is covered with a forest of multi-walled CNTs that can be coated with Ag/AgCl to provide ionic-electronic transduction. The CNT brush-like structure is to penetrate the outer layers of the skin improving electrical contact as well as increae the contact surface area. In this paper, we report the results of the first tests of this concept -- immersion on saline solution and pig skin signal detection. These indicate performance on a par with state of the art research-oriented wet electrodes.Comment: Submitted and accepted at the 28th IEEE EMBS International Conference, New York City, August 31st-September 3rd, 2006. Figures updated with proper filtering and averagin

    Does cattle and sheep grazing under best management significantly elevate sediment losses? Evidence from the North Wyke Farm Platform, UK

    Get PDF
    Purpose Intensive livestock grazing has been associated with an increased risk of soil erosion and concomitant negative impacts on the ecological status of watercourses. Whilst various mitigation options are promoted for reducing livestock impacts, there is a paucity of data on the relationship between stocking rates and quantified sediment losses. This evidence gap means there is uncertainty regarding the cost-benefit of policy preferred best management. Methods Sediment yields from 15 hydrologically isolated field scale catchments on a heavily instrumented ruminant livestock farm in the south west UK were investigated over similar to 26 months spread across 6 years. Sediment yields were compared to cattle and sheep stocking rates on long-term, winter (November-April), and monthly timescales. The impacts of livestock on soil vegetation cover and bulk density were also examined. Cattle were tracked using GPS collars to determine how grazing related to soil damage. Results No observable impact of livestock stocking rates of 0.15-1.00 UK livestock units (LU) ha(-1) for sheep, and 0-0.77 LU ha(-1) for cattle on sediment yields was observed at any of the three timescales. Cattle preferentially spent time close to specific fences where soils were visually damaged. However, there was no indication that livestock have a significant effect on soil bulk density on a field scale

    Does cattle and sheep grazing under best management significantly elevate sediment losses? Evidence from the North Wyke Farm Platform, UK

    Get PDF
    Purpose: Intensive livestock grazing has been associated with an increased risk of soil erosion and concomitant negative impacts on the ecological status of watercourses. Whilst various mitigation options are promoted for reducing livestock impacts, there is a paucity of data on the relationship between stocking rates and quantified sediment losses. This evidence gap means there is uncertainty regarding the cost–benefit of policy preferred best management. Methods: Sediment yields from 15 hydrologically-isolated field scale catchments on a heavily instrumented ruminant livestock farm in the south west UK were investigated over ~26 months spread across six years. Sediment yields were compared to cattle and sheep stocking rates on long-term, winter (November–April) and monthly time scales. The impacts of livestock on soil vegetation cover and bulk density were also examined. Cattle were tracked using GPS collars to determine how grazing related to soil damage. Results: No observable impact of livestock stocking rates of 0.15 – 1.00 UK livestock units (LU) ha-1 for sheep and 0 - 0.77 LU ha-1 for cattle on sediment yields was observed at any of the three timescales. Cattle preferentially spent time close to specific fences where soils were visually damaged. However, there was no indication that livestock have a significant effect on soil bulk density on a field-scale. Livestock were housed indoors during winters when most rainfall occurs and best management practices were used which when combined with low erodibility clayey soils likely limited sediment losses. Conclusion: A combination of clayey soils and soil trampling in only a small proportion of the field areas lead to little impact from grazing livestock. Within similar landscapes with best practice livestock grazing management, additional targeted measures to reduce erosion are unlikely to yield a significant cost-benefit
    • …
    corecore