2,756 research outputs found
Star-to-star Na and O abundance variations along the red giant branch in NGC 2808
We report for the first time Na and O abundances from high-resolution, high
S/N echelle spectra of 20 red giants in NGC 2808, taken as part of the Science
Verification program of the FLAMES multi-object spectrograph at the ESO VLT. In
these stars, spanning about 3 mag from the red giant branch (RGB) tip, large
variations are detected in the abundances of oxygen and sodium, anticorrelated
with each other; this is a well known evidence of proton-capture reactions at
high temperatures in the ON and NeNa cycles. One star appears super O-poor; if
the extension of the Na-O anticorrelation is confirmed, NGC 2808 might reach O
depletion levels as large as those of M 13. This result confirms our previous
findings based on lower resolution spectra (Carretta et al. 2003) of a large
star-to-star scatter in proton capture elements at all positions along the RGB
in NGC 2808, with no significant evolutionary contribution. Finally, the
average metallicity for NGC 2808 is [Fe/H]= -1.14 +/- 0.01 dex (rms=0.06) from
19 stars.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter
Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars
We explore the effects on nucleosynthesis in Type II supernovae of various
parameters (mass cut, neutron excess, explosion energy, progenitor mass) in
order to explain the observed trends of the iron-peak element abundance ratios
([Cr/Fe], [Mn/Fe], [Co/Fe] and [Ni/Fe]) in halo stars as a function of
metallicity for the range [Fe/H] . [Cr/Fe] and [Mn/Fe]
decrease with decreasing [Fe/H], while [Co/Fe] behaves the opposite way and
increases. We show that such a behavior can be explained by a variation of mass
cuts in Type II supernovae as a function of progenitor mass, which provides a
changing mix of nucleosynthesis from an alpha-rich freeze-out of Si-burning and
incomplete Si-burning. This explanation is consistent with the amount of
ejected Ni determined from modeling the early light curves of individual
supernovae. We also suggest that the ratio [H/Fe] of halo stars is mainly
determined by the mass of interstellar hydrogen mixed with the ejecta of a
single supernova which is larger for larger explosion energy and the larger
Str\"omgren radius of the progenitor.Comment: 17 pages, LaTeX, Accepted for publication in the Astrophysical
Journal, more discussion on the Galactic chemical evolutio
Compressible Kelvin-Helmholtz instability at the terrestrial magnetopause
The compressible magnetohydrodynamic Kelvin-Helmholtz instability occurs in two varieties, one that can be called incompressible as it exists in the limit of vanishing compressibility (primary instability), while the other exists only when compressibility is included in the model (secondary instability). In previous work we developed techniques to investigate the stability of a surface of discontinuity between two different uniform ows. Our treatment includes arbitrary jumps of the velocity and magnetic fields as well as of density and temperature, with no restriction on the wave vector of the modes. Then it allows stability analyses of complex configurations not previously studied in detail. Here we apply our methods to investigate the stability of various typical situations occurring at different regions of the front side, and the near anks of the magnetopause. The physical conditions of the vector and scalar fields that characterize the equilibrium interface at the positions considered are obtained both from experimental data and from results of simulation codes of the magnetosheath available in the literature. We give particular attention to the compressible modes in configurations in which the incompressible modes are stabilized by the magnetic shear. For configurations of the front of the magnetopause, which have small relative velocities, we find that the incompressible MHD model gives reliable estimates of their stability, and compressibility effects do not introduce significant changes. However, at the anks of the magnetopause the occurrence of the secondary instability and the shift of the boundary of the primary instability play an important role. Consequently, configurations that are stable if compressibility is neglected turn out to be unstable when it is considered and the stability properties are quite sensitive on the values of the parameters. Then compressibility should be taken into account when assessing the stability properties of these configurations, since the estimates based on incompressible MHD may be misleading. A careful analysis is required in each case, since no simple rule of thumb can be given
Homogeneous Modes of Cosmological Instantons
We discuss the O(4) invariant perturbation modes of cosmological instantons.
These modes are spatially homogeneous in Lorentzian spacetime and thus not
relevant to density perturbations. But their properties are important in
establishing the meaning of the Euclidean path integral. If negative modes are
present, the Euclidean path integral is not well defined, but may nevertheless
be useful in an approximate description of the decay of an unstable state. When
gravitational dynamics is included, counting negative modes requires a careful
treatment of the conformal factor problem. We demonstrate that for an
appropriate choice of coordinate on phase space, the second order Euclidean
action is bounded below for normalized perturbations and has a finite number of
negative modes. We prove that there is a negative mode for many gravitational
instantons of the Hawking-Moss or Coleman-De Luccia type, and discuss the
associated spectral flow. We also investigate Hawking-Turok constrained
instantons, which occur in a generic inflationary model. Implementing the
regularization and constraint proposed by Kirklin, Turok and Wiseman, we find
that those instantons leading to substantial inflation do not possess negative
modes. Using an alternate regularization and constraint motivated by reduction
from five dimensions, we find a negative mode is present. These investigations
shed new light on the suitability of Euclidean quantum gravity as a potential
description of our universe.Comment: 16 pages, compressed and RevTex file, including one postscript figure
fil
Abundances and Kinematics of Field Halo and Disk Stars I: Observational Data and Abundance Analysis
We describe observations and abundance analysis of a high-resolution,
high-S/N survey of 168 stars, most of which are metal-poor dwarfs. We follow a
self-consistent LTE analysis technique to determine the stellar parameters and
abundances, and estimate the effects of random and systematic uncertainties on
the resulting abundances. Element-to-iron ratios are derived for key alpha,
odd, Fe-peak, r- and s-process elements. Effects of Non-LTE on the analysis of
Fe I lines are shown to be very small on the average. Spectroscopically
determined surface gravities are derived that are generally close to those
obtained from Hipparcos parallaxes.Comment: 41 pages, 7 Postscript figures. Accepted for publication in the A
Sodium abundances in nearby disk stars
We present sodium abundances for a sample of nearby stars. All results have
been derived from NLTE statistical equilibrium calculations. The influence of
collisional interactions with electrons and hydrogen atoms is evaluated by
comparison of the solar spectrum with very precise fits to the Na I line cores.
The NLTE effects are more pronounced in metal-poor stars since the statistical
equilibrium is dominated by collisions of which at least the electronic
component is substantially reduced. The resulting influence on the
determination of sodium abundances is in a direction opposite to that found
previously for Mg and Al. The NLTE corrections are about -0.1 in thick-disk
stars with [Fe/H] about -0.6. Our [Na/Fe] abundance ratios are about solar for
thick- and thin-disk stars. The increase in [Na/Fe] as a function of [Fe/H] for
metal-rich stars found by Edvardsson et al. (1993) is confirmed. Our results
suggest that sodium yields increase with the metallicity, and quite large
amounts of sodium may be produced by AGB stars. We find that [Na/Fe]ratios,
together with either [Mg/Fe] ratio, kinematic data or stellar evolutionary
ages, make possible the individual discrimination between thin- and thick-disk
membership.Comment: 11pages, 11 figures. A&A accepte
Recommended from our members
Optimization of blade profiles for the Wells turbine
A Wells turbine, when coupled with an oscillating water column, allows the generation of power from the energy in waves on the surface of the ocean. In the present work, a tabu search is used to control the process of optimising the blade profile in the Wells turbine for greater performance, by maximising the torque coefficient. A free form deformation method is used as an efficient means of manipulating the blade profile and computational fluid dynamics in OpenFOAM are used to assess each profile in both two and three dimensions. Investigations into both the flow coefficient at which the optimisation is performed and the number of control variables in the free form deformation tool are performed before optimisations are done on a two-dimensional blade at the hub and tip solidities. This results in increases to the torque coefficient of 34% and 32% at the tip and hub solidities, respectively. These results are then applied to the three-dimensional turbine, giving a 14% increase in the torque coefficient. The results are assessed and an improved method of optimising the blade in two dimensions is proposed.Regione Autonoma Sardegna (grant funding co-authors from University of Cagliari
Carbon and Strontium Abundances of Metal-Poor Stars
We present carbon and strontium abundances for 100 metal-poor stars measured
from R7000 spectra obtained with the Echellette Spectrograph and Imager
at the Keck Observatory. Using spectral synthesis of the G-band region, we have
derived carbon abundances for stars ranging from [Fe/H] to
[Fe/H]. The formal errors are dex in [C/Fe]. The strontium
abundance in these stars was measured using spectral synthesis of the resonance
line at 4215 {\AA}. Using these two abundance measurments along with the barium
abundances from our previous study of these stars, we show it is possible to
identify neutron-capture-rich stars with our spectra. We find, as in other
studies, a large scatter in [C/Fe] below [Fe/H]. Of the stars with
[Fe/H], 94% can be classified as carbon-rich metal-poor stars. The Sr
and Ba abundances show that three of the carbon-rich stars are
neutron-capture-rich, while two have normal Ba and Sr. This fraction of carbon
enhanced stars is consistent with other studies that include this metallicity
range.Comment: ApJ, Accepte
New theoretical and observational results on transverse magnetic fluctuations near the magnetopause
Electromagnetic ion cyclotron waves in the plasma depletion layer measured by Wind on three inbound passes of the magnetosheath near the stagnation streamline are modeled using theoretical results from Gnavi et al., J. Geophys. Res., 105, 20973, 2000. The kinetic dispersion relation in a plasma composed of electrons, protons, and alpha particles, is solved with each species modeled by a bi-Maxwellian distribution function with parameters taken from observations, where available, and from average values found in the literature. While one pass was under substantially high solar wind dynamic pressure (~ 6.4 nPa), the other two passes were under normal dynamic pressure at 1 AU (~ 2.2 nPa). The presence of electromagnetic ion cyclotron waves in the terrestrial plasma depletion layer under normal dynamic pressure is documented and analyzed for the first time. The power spectral density of the magnetic fluctuations transverse to the background field, using high resolution (~ 11 samples/s) data from the Magnetic Field Investigation, is obtained for the inner, middle and outer regions of the plasma depletion layer. The analysis of spectra and comparison with theory is extended to the normal dynamic pressure regime. The observations show that at the inner plasma depletion layer position the spectral power density weakens as the dynamic pressure decreases, and that the frequency range of emission shifts downward with diminishing pressure. Using bipolytropic laws for the anisotropic magnetosheath, we argue that the effect of a reduction of Pdyn is to lower Ap, thereby weakening the driver of EICWs leading to marginally bifurcated spectra and weaker EICW activity in the PDL under typical conditions. Qualitative and in some cases quantitative agreement between theory and data is very good
- âŠ