12 research outputs found

    Long-Term Continental Changes in Wing Length, but Not Bill Length, of a Long-Distance Migratory Shorebird

    Get PDF
    We compiled a >50‐year record of morphometrics for semipalmated sandpipers (Calidris pusilla), a shorebird species with a Nearctic breeding distribution and intercontinental migration to South America. Our data included >57,000 individuals captured 1972–2015 at five breeding locations and three major stopover sites, plus 139 museum specimens collected in earlier decades. Wing length increased by ca. 1.5 mm (>1%) prior to 1980, followed by a decrease of 3.85 mm (nearly 4%) over the subsequent 35 years. This can account for previously reported changes in metrics at a migratory stopover site from 1985 to 2006. Wing length decreased at a rate of 1,098 darwins, or 0.176 haldanes, within the ranges of other field studies of phenotypic change. Bill length, in contrast, showed no consistent change over the full period of our study. Decreased body size as a universal response of animal populations to climate warming, and several other potential mechanisms, are unable to account for the increasing and decreasing wing length pattern observed. We propose that the post‐WWII near‐extirpation of falcon populations and their post‐1973 recovery driven by the widespread use and subsequent limitation on DDT in North America selected initially for greater flight efficiency and latterly for greater agility. This predation danger hypothesis accounts for many features of the morphometric data and deserves further investigation in this and other species

    Long-distance migratory shorebirds travel faster towards their breeding grounds, but fly faster post-breeding

    Get PDF
    Long-distance migrants are assumed to be more time-limited during the pre-breeding season compared to the post-breeding season. Although breeding-related time constraints may be absent post-breeding, additional factors such as predation risk could lead to time constraints that were previously underestimated. By using an automated radio telemetry system, we compared pre- and post-breeding movements of long-distance migrant shorebirds on a continent-wide scale. From 2014 to 2016, we deployed radio transmitters on 1,937 individuals of 4 shorebird species at 13 sites distributed across North America. Following theoretical predictions, all species migrated faster during the pre-breeding season, compared to the post-breeding season. These differences in migration speed between seasons were attributable primarily to longer stopover durations in the post-breeding season. In contrast, and counter to our expectations, all species had higher airspeeds during the post-breeding season, even after accounting for seasonal differences in wind. Arriving at the breeding grounds in good body condition is beneficial for survival and reproductive success and this energetic constraint might explain why airspeeds are not maximised in the pre-breeding season. We show that the higher airspeeds in the post-breeding season precede a wave of avian predators, which could suggest that migrant shorebirds show predation-minimizing behaviour during the post-breeding season. Our results reaffirm the important role of time constraints during northward migration and suggest that both energy and predation-risk constrain migratory behaviour during the post-breeding season

    Winter seabird distribution and abundance off south-western Greenland, 1999

    No full text
    South-western Greenland constitutes an internationally important wintering area for many seabird species. Several species of management concern have a predominantly near-coastal distribution, though available information about seabird numbers is mostly confined to offshore waters. Here we report on extensive aerial surveys conducted in March 1999, covering the coastal waters (up to 15-20 km from the mainland coast) and fjords of south-west Greenland. The most widespread and numerous species were estimated as 463 000 common eiders (Somateria mollissima), 153000 king eiders (S. spectabilis), 125000 thick-billed murres (Uria lomvia), 94 000 long-tailed ducks (Clangula hyemails), and 12 000 black guillemots (Cepphus grylle). A total of 19 bird species were recorded. The estimates for common eider and long-tailed duck approximately represent the entire winter population in south-western Greenland while estimates for the other species represent only an unknown proportion since their distribution continues further offshore. Waters around Nuuk and within the JulianehÄbsbugten (JulianehÄb Bay) area were identified as areas of high seabird density. A large proportion of the common eider population was aggregated in the fjord systems (22%), calling attention to the importance of fjords for this species. In contrast, pelagic seabird species appear to be absent from the fjords. The large winter population of common eider reveals the importance of south-western Greenland as a key wintering area for the eastern Canadian breeding population. The western Greenland breeding population is the only other contributor, probably amounting to no more than 15 000 pairs
    corecore