61 research outputs found

    Is nasal carriage of the main acquisition pathway for surgical-site infection in orthopaedic surgery?

    No full text
    International audienceThe endogenous or exogenous origin of , responsible for orthopaedic surgical-site infections (SSI), remains debated. We conducted a multicentre prospective cohort study to analyse the respective part of exogenous contamination and endogenous self-inoculation by during elective orthopaedic surgery. The nose of each consecutive patient was sampled before surgery. Strains of isolated from the nose and the wound, in the case of SSI, were compared by antibiotypes or pulsed-field gel electrophoresis (PFGE). A total of 3,908 consecutive patients undergoing orthopaedic surgery were included. Seventy-seven patients developed an SSI (2%), including 22 related to (0.6%). was isolated from the nose of 790 patients (20.2%) at the time of surgery. In the multivariate analysis, nasal carriage was found to be a risk factor for SSI in orthopaedic surgery. However, only nine subjects exhibiting SSI had been found to be carriers before surgery: when compared, three pairs of strains were considered to be different and six similar. In most cases of SSI, either an endogenous origin could not be demonstrated or pre-operative nasal colonisation retrieved a strain that was different from the one recovered from the surgical sit

    Pseudomonas aeruginosa displays an epidemic population structure.

    Full text link
    peer reviewedBacteria can have population structures ranging from the fully sexual to the highly clonal. Despite numerous studies, the population structure of Pseudomonas aeruginosa is still somewhat contentious. We used a polyphasic approach in order to shed new light on this issue. A data set consisting of three outer membrane (lipo)protein gene sequences (oprI, oprL and oprD), a DNA-based fingerprint (amplified fragment length polymorphism), serotype and pyoverdine type of 73 P. aeruginosa clinical and environmental isolates, collected across the world, was analysed using biological data analysis software. We observed a clear mosaicism in the results, non-congruence between results of different typing methods and a microscale mosaic structure in the oprD gene. Hence, in this network, we also observed some clonal complexes characterized by an almost identical data set. The most recent clones exhibited serotypes O1, 6, 11 and 12. No obvious correlation was observed between these dominant clones and habitat or, with the exception of some recent clones, geographical origin. Our results are consistent with, and even clarify, some seemingly contradictory results in earlier epidemiological studies. Therefore, we suggest an epidemic population structure for P. aeruginosa, comparable with that of Neisseria meningitidis, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise

    Pseudomonas aeruginosa Population Structure Revisited

    Get PDF
    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa “core lineage” and typically exhibited the exoS+/exoU− genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set

    Population Structure of Pseudomonas aeruginosa from Five Mediterranean Countries: Evidence for Frequent Recombination and Epidemic Occurrence of CC235

    Get PDF
    Several studies in recent years have provided evidence that Pseudomonas aeruginosa has a non-clonal population structure punctuated by highly successful epidemic clones or clonal complexes. The role of recombination in the diversification of P. aeruginosa clones has been suggested, but not yet demonstrated using multi-locus sequence typing (MLST). Isolates of P. aeruginosa from five Mediterranean countries (n = 141) were subjected to pulsed-field gel electrophoresis (PFGE), serotyping and PCR targeting the virulence genes exoS and exoU. The occurrence of multi-resistance (≥3 antipseudomonal drugs) was analyzed with disk diffusion according to EUCAST. MLST was performed on a subset of strains (n = 110) most of them had a distinct PFGE variant. MLST data were analyzed with Bionumerics 6.0, using minimal spanning tree (MST) as well as eBURST. Measurement of clonality was assessed by the standardized index of association (IAS). Evidence of recombination was estimated by ClonalFrame as well as SplitsTree4.0. The MST analysis connected 70 sequence types, among which ST235 was by far the most common. ST235 was very frequently associated with the O11 serotype, and frequently displayed multi-resistance and the virulence genotype exoS−/exoU+. ClonalFrame linked several groups previously identified by eBURST and MST, and provided insight to the evolutionary events occurring in the population; the recombination/mutation ratio was found to be 8.4. A Neighbor-Net analysis based on the concatenated sequences revealed a complex network, providing evidence of frequent recombination. The index of association when all the strains were considered indicated a freely recombining population. P. aeruginosa isolates from the Mediterranean countries display an epidemic population structure, particularly dominated by ST235-O11, which has earlier also been coupled to the spread of ß-lactamases in many countries

    Pharmaceutical Particle Engineering via Spray Drying

    Full text link
    corecore