39 research outputs found

    Development of a vehicle track interaction model to predict the vibratory benefits of rail grinding in the time domain

    Get PDF
    Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unknown. In order to assess the effectiveness of these measures, this paper develops a vehicle-track interaction model in the time domain of a curved track with presence of rail corrugation on the inner rail. To characterize the behavior of the track, a numerical finite element model is developed using ANSYS software, while the behavior of the vehicle is characterized by a unidirectional model of two masses developed with VAMPIRE PRO software. The overloads obtained with the dynamic model are applied to the numerical model and then, the vibrational response of the track is obtained. Results are validated with real data and used to assess the effectiveness of rail grinding in the reduction of wheel-rail forces and the vibration generation phenomenon.Real Herráiz, JI.; Zamorano, C.; Velarte, JL.; Blanco, AE. (2015). Development of a vehicle track interaction model to predict the vibratory benefits of rail grinding in the time domain. Journal of Modern Transportation. 23(3):189-201. doi:10.1007/s40534-015-0078-yS189201233Grassie SL, Kalousek J (1993) Rail corrugation: characteristics, causes and treatments. Proc Inst Mech Eng Part F: J Rail Rapid Transit 207:57–68Grassie SL (2005) Rail corrugation: advances in measurement, understanding and treatment. Wear 258:1224–1234Grassie SL (2009) Rail corrugation: characteristics, causes and treatments. Proc Inst Mech Eng Part F: J Rail Rapid Transit 223:581–596Suda Y, Komine H, Iwasa T, Terumichi Y (2002) Experimental study on mechanism of rail corrugation using corrugation simulator. Wear 253:162–171Jin XS, Wen ZF, Wang KY, Zhou ZR, Liu QY, Li CH (2006) Three-dimensional train–track model for study of rail corrugation. J Sound Vib 293(3):830–855Zhao X, Li Z, Esveld C, Dollevoet R (2007) The dynamic stress state of the wheel–rail contact. In: Proceedings of the 2nd IASME/WSEAS international conference on continuum mechanicsTorstensson P, Nielsen J (2011) Simulation of dynamic vehicle-track interaction on small radius curves. Veh Syst Dyn 49(11):1711–1732Hawari HM, Murray MH (2008) Effects of train characteristics on the rate of deterioration of track roughness. J Eng Mech 134(3):234–239Ling L, Li W, Shang H, Xiao X, Wen Z, Jin X (2014) Experimental and numerical investigation of the effect of rail corrugation on the behaviour of rail fastenings. Veh Syst Dyn 52(9):1211–1231Collette C, Horodinca M, Preumont A (2009) Rotational vibration absorber for the mitigation of rail rutting corrugation. Veh Syst Dyn 47:641–659Egaña J, Viñolas J, Gil-Negrete L (2005) Effect of liquid high positive friction (HPF) modifier on wheel-rail contact and rail corrugation. Tribol Int 38:769–774Real Herraiz JI, Galisteo Cabeza A, Real T, Zamorano Martin C (2012) Study of wave barriers design for the mitigation of railway ground vibrations. J Vibroeng 14(1):408–422Real JI, Zamorano C, Hernandez C, Comendador R, Real T (2014) Computational considerations of 3-D finite element method models of railway vibration prediction in ballasted tracks. J Vibroeng 16(4):1709–1722Andersen L, Jones CJ (2001) Three-dimensional elastodynamic analysis using multiple boundary element domains. ISVR Technical Memorandum, University of Southampton, SouthamptonLópez Pita A (2006) Infraestructuras Ferroviarias. Universitat Politècnica de Catalunya, BarcelonaAlves P, Calçada R, Silva A (2011) Vibrations induced by railway traffic: influence of the mechanical properties of the train on the dynamic excitation mechanism. In: Proceedings of the 8th international conference on structural dynamics, EURODYN 2011, Leuven, BelgiumFerrara R, Leonardi G, Jourdan F (2012) Numerical modelling of train induced vibrations. In: SIIV-5th international congress—sustainability of road infrastructures, Rome, ItalyUzzal RU, Ahmed AK, Bhat RB (2013) Modelling, validation and analysis of a three-dimensional railway vehicle–track system model with linear and nonlinear track properties in the presence of wheel flats. Veh Syst Dyn 51(11):1695–1721Eadie DT, Kalousek J, Chiddick KC (2002) The role of high positive friction (HPF) modifier in the control of short pitch corrugations and related phenomena. Wear 253:185–19

    Study of the Falling Friction Effect on Rolling Contact Parameters

    Get PDF
    [EN] The existence of a wheel rail friction coefficient that depends on the slip velocity has been associated in the literature with important railway problems like the curving squeal and certain corrugation problems in rails. Rolling contact models that take into account this effect were carried out through the so-called Exact Theories adopting an exact elastic model of the solids in contact, and Simplified Theories which assume simplified elastic models such as Winkler. The former ones, based on Kalker s Variational Theory, give rise to numerical problems; the latter ones need to adopt hypotheses that significantly deviate from actual conditions, leading to unrealistic solutions of the contact problem. In this paper, a methodology based on Kalker s Variational Theory is presented, in which a local slip velocity-dependent friction law is considered. A formulation to get steady-state conditions of rolling contact by means of regularisation of the Coulomb s law is proposed. The model allows establishing relationships in order to estimate the global properties (creepage velocities vs. total longitudinal forces) through local properties (local slip velocity vs. coefficient of friction) or vice versa. The proposed model shows a good agreement with experimental tests while solving the numerical problems previously mentioned.The authors acknowledge the financial contribution of the Spanish Ministry of Economy and Competitiveness through the Project TRA2013-45596-C2-1-R.Giner Navarro, J.; Baeza González, LM.; Vila Tortosa, MP.; Alonso Pazos, A. (2017). Study of the Falling Friction Effect on Rolling Contact Parameters. Tribology Letters. 65(1). https://doi.org/10.1007/s11249-016-0810-8S651Grassie, S.L., Elkins, J.A.: Rail corrugation on North American transit systems. Veh. Syst. Dyn. 28, 5–17 (1998)Hsu, S.S., Huang, Z., Iwnicki, S.D., Thompson, D.J., Jones, C.J.C., Xie, G., Allen, P.D.: Experimental and theoretical investigation of railway wheel squeal. Proc. Inst. Mech. Eng. F J. Rail Rapid Transit 221, 59–73 (2007)Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer, Dordrecht (1990)Polach, O.: Influence of locomotive tractive effort on the forces between wheel and rail. Veh. Syst. Dyn. 35, 7–22 (2001)Giménez, J.G., Alonso, A., Gómez, E.: Introduction of a friction coefficient dependent on the slip in the FastSim algorithm. Veh. Syst. Dyn. 43, 233–244 (2005)Baeza, L., Vila, P., Roda, A., Fayos, J.: Prediction of corrugation in rails using a non-stationary wheel–rail contact model. Wear 265, 1156–1162 (2008)Vollebregt, E.A.H., Schuttelaars, H.M.: Quasi-static analysis of two-dimensional rolling contact with slip-velocity dependent friction. J. Sound Vib. 331, 2141–2155 (2012)Avlonitis, M., Kalaitzidou, K., Streator, J.: Investigation of friction statics and real contact area by means a modified OFC model. Tribol. Int. 69, 168–175 (2014)Berger, E.J., Mackin, T.J.: On the walking stick–slip problem. Tribol. Int. 75, 51–60 (2014)Alonso, A., Guiral, A., Baeza, B., Iwnicki, S.D.: Wheel–rail contact: experimental study of the creep forces–creepage relationships. Veh. Syst. Dyn. 52(S1), 469–487 (2014)Spiryagin, M., Polach, O., Cole, C.: Creep force modelling for rail traction vehicles based on the Fastsim algorithm. Veh. Syst. Dyn. 51, 1765–1783 (2013)Vollebregt, E.A.H.: Numerical modeling of measured railway creep versus creep-force curves with CONTACT. Wear 314, 87–95 (2014)Kalker, J.J.: On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction. PhD Thesis, Technical University of Delft (Holland) (1967)Baeza, L., Fuenmayor, F.J., Carballeira, J., Roda, A.: Influence of the wheel–rail contact instationary process on contact parameters. J. Strain Anal. Eng. 42, 377–387 (2007)Le Rouzic, J., Le Bot, A., Perret-Liaudet, J., Guibert, M., Rusanov, A., Douminge, L., Bretagnol, F., Mazuyer, D.: Friction-induced vibration by Stribeck’s law: application to wiper blade squeal noise. Tribol. Lett. 49, 563–572 (2013)Rabinowicz, E.: The nature of the static and kinetic coefficients of friction. J. Appl. Phys. 22, 1373–1379 (1951)Carter, F.W.: On the action of locomotive driving wheel. Proc. R. Soc. Lon. Ser. A 112, 151–157 (1926)Kalker, J.J.: A fast algorithm for the simplified theory of rolling contact. Veh. Syst. Dyn. 11, 1–13 (1982

    Railway-induced ground vibrations – a review of vehicle effects

    Get PDF
    This paper is a review of the effect of vehicle characteristics on ground- and track borne-vibrations from railways. It combines traditional theory with modern thinking and uses a range of numerical analysis and experimental results to provide a broad analysis of the subject area. First, the effect of different train types on vibration propagation is investigated. Then, despite not being the focus of this work, numerical approaches to vibration propagation modelling within the track and soil are briefly touched upon. Next an in-depth discussion is presented related to the evolution of numerical models, with analysis of the suitability of various modelling approaches for analysing vehicle effects. The differences between quasi-static and dynamic characteristics are also discussed with insights into defects such as wheel/rail irregularities. Additionally, as an appendix, a modest database of train types are presented along with detailed information related to their physical attributes. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibrations. It is concluded that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. Therefore, where possible, when using numerical approach, the vehicle should be modelled in detail. Additionally, it was found that there are a wide variety of modelling approaches capable of simulating train types effects. If non-linear behaviour needs to be included in the model, then time domain simulations are preferable, however if the system can be assumed linear then frequency domain simulations are suitable due to their reduced computational demand

    Innovative methodology for heavy haul train-track interaction dynamics issues

    No full text
    With the introduction of higher axleload wagons and higher traction locomotives in Australia, more rail damage can be observed. To investigate rail damage due to wheel-rail dynamic interactions, a new method is introduced which uses a two-way co-simulation technique to link a detailed infinitely long track model that is written in FORTRAN and a detailed locomotive or wagon model that is developed using the GENSYS software package. The original finite length track model has been evolved into an infinite one by using the method described in [1], considering rails, fasteners, sleepers, ballast, and subgrade. The locomotive or wagon model considers the carbody, bogie frames and wheelsets. Traction motors and gear boxes are considered in the locomotive model. As the track model and vehicle model can run mostly independently, a parallel computing technique is applied to improve the simulation speed as well as to simplify the model integration process. The co-simulation method can be applied to understand the dynamic performance characteristics of high axleload wagons and high adhesion locomotives to give an accurate evaluation and assessment of rail damage based on simulation results. One simulation case is used to demonstrate the method’s effectiveness
    corecore