
ORIGINAL PAPER

Study of the Falling Friction Effect on Rolling Contact Parameters

Juan Giner1 • Luis Baeza2 • Paloma Vila1 • Asier Alonso3

Received: 21 March 2016 / Accepted: 31 December 2016 / Published online: 10 January 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract The existence of a wheel–rail friction coefficient

that depends on the slip velocity has been associated in the

literature with important railway problems like the curving

squeal and certain corrugation problems in rails. Rolling

contact models that take into account this effect were

carried out through the so-called Exact Theories adopting

an exact elastic model of the solids in contact, and Sim-

plified Theories which assume simplified elastic models

such as Winkler. The former ones, based on Kalker’s

Variational Theory, give rise to numerical problems; the

latter ones need to adopt hypotheses that significantly

deviate from actual conditions, leading to unrealistic

solutions of the contact problem. In this paper, a method-

ology based on Kalker’s Variational Theory is presented, in

which a local slip velocity-dependent friction law is con-

sidered. A formulation to get steady-state conditions of

rolling contact by means of regularisation of the Cou-

lomb’s law is proposed. The model allows establishing

relationships in order to estimate the global properties

(creepage velocities vs. total longitudinal forces) through

local properties (local slip velocity vs. coefficient of fric-

tion) or vice versa. The proposed model shows a good

agreement with experimental tests while solving the

numerical problems previously mentioned.

Keywords Rolling contact � Falling friction coefficient �
Coulomb’s law regularisation

1 Introduction

Rolling contact models are widely used in railway tech-

nology in order to compute wheel–rail contact forces or

estimate wheel and rail wear. With few exceptions, these

contact theories implement the original Coulomb’s law

with a constant friction coefficient. Nevertheless, the

existence of a coefficient of friction falling with the slip

velocity has been associated (together with another mech-

anisms) with corrugation of rails [1], or squeal noise in

narrow curves [2]. Figure 1 shows the creep force versus

creepage when both a constant finite and an infinite friction

coefficients are considered. The same plot presents the

expected creep force when a falling friction coefficient is

adopted, which is differentiated by a local minimum that

would explain stick–slip phenomena.

Some researchers have developed rolling contact theo-

ries that represent the dependence of the coefficient of

friction on the slip velocity, generally by two coefficients

of friction (static/kinematic). These models are either

Simplified Theories (see definition in [3], and examples in

[4, 5]), that somehow simplify the relationships between

the contact traction distributions and the displacements in

the contact area, or they are based on the Kalker’s tan-

gential Variational Theory [3], that introduces a half-space

elastic model in the formulation (Exact Theory). The

Simplified Theories are adjusted to converge to the results

from the Exact Theories, giving a good agreement when

comparing the velocity of the wheel–rail contact point

(creepages) and forces [3]. However, this agreement does

not occur for the local slip velocities [6] and consequently,
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the high errors resulting in the slip velocities seem to make

the Simplified Theories inadequate to model the contact

process through a non-constant coefficient of friction that

depend on the slip velocity.

Kalker’s Variational Theory is potentially a good

approach since it is based on realistic assumptions of the

rolling contact problem and does not introduce unrealistic

hypotheses as Simplified Theories do. Nevertheless, the

computed contact traction distribution presents a saw-teeth

shape [7–9], which is either considered as a reliable solu-

tion by some authors, or a numerical error. The imple-

mentation of the velocity-dependent friction coefficient

makes the physics strongly nonlinear, and multiple solu-

tions could satisfy the rolling contact problem equations.

In this paper, a methodology based on Kalker’s Varia-

tional Theory is presented in which the falling friction

coefficient is considered. The original instationary method

is modified in order to obtain the steady-state solution of

the rolling contact problem. The numerical problems found

in the literature are solved through the implementation of

the Coulomb’s law regularisation. A methodology is pro-

posed for relating the contact global properties associated

with creepage velocities and total longitudinal forces, with

local properties such as local slip velocity and dependent

friction characteristics. These relationships avoid adopting

incompatible contact parameter sets.

The present approach adopts experimental results pub-

lished in [10] (see test-bench image in Fig. 2). The litera-

ture shows creep curves measured in real field experiments

(see examples provided in [11, 12]) in order to study the

locomotive traction capability. In such cases, the longitu-

dinal creepage typically reaches values of 50% and higher,

whereas the creepage is lower than 3% in most of the

railway dynamic problems within the scope of the present

paper.

Creep velocity is a phenomenon due to the displace-

ments associated with the elastic deformations close to the

contact area, and the local slip velocities, as it will be

shown in Sect. 2. The Linear Contact Theory [13] neglects

the local slip velocity (it is a so-called adhesion theory),

and according to this theory the total force F1 is f11n1,

being n1 the longitudinal creepage and f11 the creep

(Kalker’s) coefficient. The maximum longitudinal force per

wheel in typical European networks rarely exceeds 50 kN,

and a typical creep coefficient f11 is around 1.5 9 107 N. If

only the displacements associated with the elastic defor-

mations would explain the creepage value, in this unfa-

vourable scenario the creepage will be (through the Linear

Theory equation) only 0.3%. Consequently, typical creep-

age values that are considered in locomotive traction tests

are dominated by the slip velocity at the wheel–rail contact

point, the full contact area is slip area, and the role of the

displacements associated with the elastic deformations is

negligible.

For low creepages, the creep–force relationship presents

a high gradient and the possible accuracy of the creepage

measurement in a real railway vehicle cannot permit to

obtain good precision if the creepage is low. The needed

accuracy is reached in the laboratory bench of Ref. [10]

(with a 0.05% of error in creepage), for slightly larger

creepages than the ones of the saturation conditions, which

is the case of interest in the main problems in railway

dynamics. The proposed approach tries to reproduce these

experimental results where the displacements associated

with the elastic deformations must be considered in the

physical model.

The model adopted in this work is presented in Sect. 2

of this paper. In order to present parameters and establish

Fig. 1 Behaviour of the creep force and local traction distribution

depending on the friction coefficient: l ¼ 1 (adhesion model),

l = constant finite value, and l ¼ lðsÞ as a function of the slip

velocity s

Fig. 2 Rolling contact test-bench at CEIT

29 Page 2 of 10 Tribol Lett (2017) 65:29

123



the formulation, this section summarises the Kalker’s

Variational Theory which is extensively explained in

[3, 14]. Implementing a falling friction coefficient model,

the formulation introduces local parameters that define the

friction coefficient as a function of the slip velocity. These

parameters are also related with the global parameters that

characterise the creep curves (tangential forces vs. creep-

ages). The formulae that relate the parameters of the rolling

contact theory are presented in Sect. 3 of the present work.

Section 4 of this article shows results from the proposed

methodology.

2 Tangential Contact Model

An inertial reference system X1X2X3 moving with the

contact is adopted. The origin of the system is the theo-

retical contact point (point where the solids would be in

contact if both were rigid). The X1-axis refers to the rolling

(or longitudinal) direction and the X2-axis is associated

with the lateral direction in such a way that X1X2 is the

tangential contact plane.

Kalker [3] deduced a kinematic model of the tangential

contact that permits to relate the global displacement from

the deformed and non-deformed configuration displace-

ments. In this relationship, the velocity of the solids in

contact can be described through the movement of the rigid

solid and the displacements associated with the deforma-

tions as

s ¼ wþ 2
Du

Dt
¼ wþ 2

ou

ot
þ 2V

ou

ox1

; ð1Þ

in which u are the displacements associated with the elastic

deformation of the solids in contact, s is the local slip

velocity, w is the velocity associated with the undeformed

configuration, V is the rolling velocity and D=Dt denotes

the material derivative with respect to time. Vectors u, s

and w are in the X1X2 contact plane (they contain longi-

tudinal and lateral components), and they are functions of

the point x ¼ x1; x2f gT
within the contact area. Vector w is

obtained from the creepages as follows

w ¼ V
n1 � x2nsp
n2 þ x1nsp

� �
; ð2Þ

where n1, n2 and nsp are the longitudinal, lateral and spin

creepages, respectively. The creepages n1 and n2 are

computed as the velocities of the wheel contact point in the

longitudinal and the lateral directions, respectively, divided

by the rolling velocity. The creepage nsp is the spin velocity

(scalar product of the angular velocity of the wheel and the

unit vector that is normal to the contact) divided by the

rolling velocity. Assuming linear elastic behaviour of the

bodies in contact, the constitutive equation can be written

as follows

u xð Þ ¼
Z
S

a x; yð Þ p1ðyÞ dsðyÞ þ
Z
S

b x; yð Þ p2ðyÞ dsðyÞ;

ð3Þ

where the integral is extended to the contact surface. p1 and

p2 are the longitudinal and lateral tractions, and vectors

aðx; yÞ and bðx; yÞ contain the elastic influence functions.

Integrals in Eq. (3) are the Boussinesq-Cerruti integrals

when the elastic half-space hypothesis is adopted.

If the steady-state conditions are imposed, the partial

derivative with respect to t in Eq. (1) is zero. By intro-

ducing the constitutive formula (3) in Eq. (1) and assuming

steady-state response, this term results

s ¼ wþ 2V

Z
S

oa x; yð Þ
ox1

p1ðyÞ þ
ob x; yð Þ
ox1

p2ðyÞ
�

þ a x; yð Þ op1ðyÞ
ox1

þ b x; yð Þ op2ðyÞ
ox1

�
dsðyÞ:

ð4Þ

It must be pointed out that y is the variable of integration

in Eq. (4) and consequently it is independent of x1.

Therefore, the derivatives op1 yð Þ=ox1 and op2 yð Þ=ox1 are

zero. Thus, Eq. (4) results

s ¼ wþ 2V

Z
S

oa x; yð Þ
ox1

p1ðyÞ þ
ob x; yð Þ
ox1

p2ðyÞ
� �

dsðyÞ:

ð5Þ

The numerical resolution associated with Kalker’s tan-

gential Variational Theory proposes a discretisation of the

contact area into a regular mesh through rectangular ele-

ments, where the contact parameters are supposed constant.

Let sJ , wJ and pJ be the parameters at the Jth element. By

considering the discretisation, Eq. (5) results

sJ ¼wJ þ2V
XN
I¼1

pI1

Z
SI

oa x;yð Þ
ox1

dsðyÞþpI2

Z
SI

ob x;yð Þ
ox1

dsðyÞ

0
@

1
A;

ð6Þ

where N is the number of elements in the mesh and SI is

the contact surface of the Ith element. By assuming half-

space elastic behaviour of the solids, a closed-form solution

of the integrals in Eq. (6) can be obtained. The corre-

sponding integrals can be arranged in a matrix, giving

sJ ¼ wJ þ 2V CJ p; ð7Þ

where column matrix p contains the tractions of the

elements.

The original Kalker’s method needs to establish in

Eq. (7) the elements of the mesh that are in adhesion and
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those that are slipping. An alternative procedure is based

on the regularisation of the Coulomb’s law, where the local

traction distribution is formulated from the local slip

velocities through a smooth fitting function. The one

adopted in this work is the following

pJj � � 2

p
arctan

sJk k
e

� �
lpJ3s

J
j

sJk k ; j ¼ 1; 2; ð8Þ

with l being the friction coefficient. The formula of Eq. (8)

converges to the Coulomb’s law when e approaches zero.

The parameter e must be chosen small enough such that the

error of the regularisation is minimised, but the conver-

gence to the solution is compromised if e is too small. The

present work adopts e ¼ 10�8 m/s, which allows obtaining

results in agreement with the original Coulomb’s law.

The regularisation of the Coulomb’s law has the following

advantages. Firstly, the unknowns in the rolling contact equa-

tion Eq. (8) are reduced to local slip velocities, and the com-

putational cost is smaller since the iterative process of the

original Variational Theory (where sets of adhesion and slip

elements are tested) is avoided. Secondly, it facilitates to

implement a friction coefficient l that depends on the local slip

velocity. And finally, all the contact parameters are smooth

distributions even in the border between the adhesion/slip areas.

An exponential falling model for the local slip velocity-

dependent friction coefficient is chosen in the present work

since it is widely used in the literature as a simplification of

the Stribeck’s friction law [15], without considering the

hydrodynamic ascending regime for high slip velocities.

Based on the experimental results from [10], in which the

total tangential force is stabilised for high creepages, a

constant kinematic friction coefficient was taken into

account, giving the following formula

l sð Þ ¼ lk þ ls � lkð Þ e�cl sk k; ð9Þ

where ls and lk are the static and the kinematic friction

coefficients, respectively, and cl is an exponential

parameter.

Figure 3 shows three models of the friction coefficient.

The right plot is a zoomed view of the left one. The fig-

ure represents the total tangential traction versus normal

traction curves through different approaches. In continuous

trace, the curve represents a typical falling friction coeffi-

cient following Eq. (9). The other curves adopt regulari-

sation by means of Eq. (8), and they present differentiable

functions with a high gradient close to zero slip velocity. In

dashed trace, the regularisation adopts a constant friction

coefficient; in dotted line, it takes the former falling friction

coefficient model.

3 Parameters of the Rolling Contact Model

Figure 4 schematises the main relationships that involve

the tangential rolling contact problem. On the left, Fig. 4a

shows a model of the local slip velocity dependence of the

friction coefficient. This model is associated with the local

parameters of the wheel–rail contact, corresponding to

Eq. (9); the static, ls, and the kinematic, lk, friction

coefficients are introduced in that equation, together with

the local slip velocity for which a value 1% above the

kinematic friction coefficient, s
^

, as follows

l s
^

� �
¼ lk þ 0:01 ls � lkð Þ: ð10Þ

Figure 4b sketches the tangential contact relationship of

the global parameters, following the results proposed in

[16] for the rolling contact in the presence of a falling

friction coefficient. The creep–total force curve presents a

maximum of the contact force at the force–creepage pair

ðF
_

; n
_

Þ. The total tangential force saturates at F
^

for large

creepage values, and the creepage from which this happens

is n
^

.

A mathematical relationship between the local parame-

ters ðls; lk; s
^Þ and creep parameters ðF

_

;F
^

; n
_

; n
^

Þ can be

Fig. 3 Different friction

coefficient models. Continuous

trace falling friction coefficient

through Eq. (9), being

ls ¼ 0:45, lk ¼ 0:4 and cl ¼
1:15 � 104 s/m. Dashed trace

regularisation of Coulomb’s law

with constant friction coefficient

l ¼ 0:4. Dotted trace

regularisation of Coulomb’s law

where the friction coefficient

follows Eq. (9)
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revealed from the relationship between local slip velocity

and contact tractions for steady-state condition in Eq. (7).

This would permit to set the local parameters of the present

tangential contact model from any experimental creep–to-

tal force curve in order to reproduce the behaviour of the

contact forces in global terms from a physical model

evaluated locally in every contour element of the mesh

covering the contact area.

The saturation force F
^

is obtained when the actual

friction coefficient is lk for all the elements of the mesh,

that is

F
^

¼ lk
XN
J¼1

aJpJ3; ð11Þ

where aJ is the area of the Jth element.

Let us consider the case where the total force is F
^

and

the creepage is n
^

. This case is reached when there is just

one element where the local slip velocity is s
^

(the other

elements have sJk k� s
^

). This element must be at the

leading edge of the contact area. Without loss of generality,

let us consider a 2-dimensional contact case, where the

element at the leading position is numbered as L. Equa-

tion (7) can be written for the present case as follows

sL1 ¼ s
^ ¼ Vn

^

þ 2V
X
i

CL
1ilkp

i
3: ð12Þ

It must be pointed out that the friction coefficient model

associated with Eq. (12) does not attain the precise kinetic

value lk. The kinetic friction coefficient lk is assumed to

be lðs^Þ, obtaining the following constrain equation

s
^ ¼ Vn

^

þ 2V
X
i

CL
1ilðs

^Þpi3: ð13Þ

The peak force F
_

and the creepage n
_

are related through

the following equation

oF

on

����
F
_
;n
_
¼ 0: ð14Þ

The derivative of Eq. (14) can be obtained by means of

finite differences. Equations (9), (13) and (14) constrain the

values of the local parameters ðls; lk; s
^Þ and the global

parameters ðF
_

;F
^

; n
_

; n
^

Þ. Consequently, no more than four

parameters can be set. Hence, these equations permit to

make a reliable approach for the local parameters that

characterise the tangential contact model from the global

parameters extracted from any experimental creep curve.

ls, lk are needed for the definition of the falling friction

coefficient in Eq. (9), and s
^

permits to evaluate the expo-

nential cl used in this equation from Eq. (10):

cl ¼ � log 0:01ð Þ
s
^

: ð15Þ

4 Results

4.1 First Analysis Through a 2D Approach

In this section, results from calculations performed using

the proposed model are presented. The approach is limited

to a 2-dimensional case. This restrictive hypothesis permits

to compare with Carter’s model [17], which provides an

analytical reference solution of the 2D case. For the studied

case, the solids in contact are considered cylindrical. The

material (a type of rubber much softer than steel) and the

geometrical properties together with the model parameters

are detailed in Table 1.

The first result is shown in Fig. 5 where the contact

traction distribution is plotted for lk ¼ 0:35 and ls ¼ 0:45.

The same calculation is carried out through three different

approaches. One of them was the Carter’s model with a

(a) (b)Fig. 4 Sketch of global and

local parameters of the wheel–

rail contact
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single friction coefficient lk. The other approaches consist

in the Kalker’s Variational Theory with and without reg-

ularisation, where the friction coefficient is introduced

through the model proposed in Eq. (8). Figure 5 also shows

the bound limits established by the kinematic and the static

friction coefficients.

The model that adopts regularisation and the Carter’s

model produce indistinguishable results in the Carter’s

adhesion area, whereas the Variational Theory leads to the

same results in the Carter’s slip area. Both approaches

induce a peak in the slip-adhesion border, as a consequence

of the decreasing friction coefficient.

The tangential traction distribution obtained using the

Variational Theory without regularisation presents a dip in

the adhesion area that can be attributed to the numerical

errors introduced by the discontinuity between the adhe-

sion and the slip regions. Hence, regularisation permits to

avoid that discontinuity in the equations, removing the dip

as observed in Fig. 5. Thus, the transition is smooth,

matching perfectly with the Carter’s solution for the

adhesion region.

Once introduced the regularisation, the work is focused

on studying the effect of adopting two different coefficients

of friction on the creep–force curves. Figure 6 presents

different creep curves for a fixed value 0.30 of the kine-

matic coefficient and increasing values of the static coef-

ficient. The tangential tractions are normalised by the

normal load; thus, the saturation value of all the curves

matches lk. As shown in this figure, when both kinematic

and static values are the same (constant coefficient of

friction), the creep curve reproduces the expected beha-

viour reported in the literature, which serves as a base for

Simplified Theories. When increasing the static value, a

maximum appears around the creepage value of 0.01.

Following with the sensitivity study, the static value is

set now to 0.45 and the kinematic one increases from 0.30

to 0.45. As expected, Fig. 7 shows that the maximum is

more pronounced for higher differences between static and

kinematic coefficients. Two observations must be high-

lighted: firstly, higher values of lk displace the maximum

to higher creepages; secondly, for a fixed ls, the higher the

fall in the friction law is considered (lower lk), the sooner

and more pronounced will be the reduction of the initial

slope of the creep curve.

The dependence of creep curves on vehicle velocity V is

depicted in Fig. 8, where the total force is lower for

intermediate creepages when increasing velocity. Thus, the

magnitude of the maximum decreases for higher velocities,

reaching the saturation value earlier.

Figures 9, 10 and 11 summarise the behaviour of pre-

vious curves depicting the normalised difference between

the maximum longitudinal force with respect to the satu-

ration point, ðF
_

� F
^

=F3Þ. Figure 9 verifies that the creep–

force maximum is more pronounced (with an almost linear

Table 1 Parameters of the model

Shear modulus, G (N/m2) 1.0 9 106

Poisson’s ratio, m (–) 0.28

Roller 1 radius, r11 (mm) 337.5

Roller 2 radius, r21 (mm) 337.5

Normal contact force, F3 (N) 470.5

Vehicle speed, V (m/s) 25

Number of elements in spatial discretisation, N 100

Local slip saturation value, s
^

(m/s) 0.2

-1 -0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Longitudinal position   x1/a     [-]

Ta
ng

en
tia

l t
ra

ct
io

ns
   p

1/p
m
ax

3
   

  [
-]

Fig. 5 Tangential traction distribution for falling exponential coef-

ficient of friction. Thin solid line static and kinematic bounds; grey

rectangles Carter’s analytical solution; filled squares numerical

solution without regularisation; thick solid line numerical solution

with regularisation

Fig. 6 Creep–force curve setting the kinematic friction coefficient

lk ¼ 0:30 and increasing the static one ls (thin solid line ls ¼ 0:30;

dashed line ls ¼ 0:35; dashed dotted line ls ¼ 0:40; thick solid line

ls ¼ 0:45)
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behaviour) compared with the saturation value when

increasing ls. It is interesting to point out that, for a dif-

ference about 0.15 between both coefficients (lk ¼ 0:35

and ls ¼ 0:50), normalised force difference is about 0.008

(or 6% for the relative percentage difference), while Ref.

[16] showed estimations with more marked differences,

about 22% for similar conditions of velocity. On the other

hand, when lk increases, the force peak decreases while lk
is approaching the fixed ls coefficient, as expected (see

Fig. 10); its reduction seems to be close to an exponential

behaviour. Finally, Fig. 11 shows that the magnitude of the

maximum is reduced similarly to that of the previous

figure while increasing the vehicle velocity V, without

varying its creepage position.

4.2 Comparison with Experimental Data

The tangential contact model proposed is now extended to

the 3-dimensional formulation presented in Sect. 2 and

compared with the measurements made in CEIT (Centre

for Technical Research and Studies in San Sebastian,

Spain) by using its rolling contact scaled test-bench

developed in [10]. Both wheel and rail are substituted by

two steel rollers. The rotational velocity of one of the

rollers is 500 rpm, and the brake torque of the other is

incremented with intervals of 20 N�m. This permits to

Fig. 7 Creep–force curve setting the static friction coefficient ls ¼
0:45 and increasing the kinematic one lk (thin solid line lk ¼ 0:30;

dashed line lk ¼ 0:35; dashed dotted line lk ¼ 0:40; thick dashed

line lk ¼ 0:45)

Fig. 8 Creep–force curve setting the static friction coefficient ls ¼
0:40 and the kinematic one lk ¼ 0:30 and increasing the vehicle

velocity (thin dashed line V ¼ 15 m/s; dashed dotted line V ¼ 25

m/s; thick dashed line V ¼ 35 m/s; thick solid line V = 40 m/s)

Fig. 9 Difference between the maximum and saturation values of the

creep–force setting the kinematic friction coefficient lk ¼ 0:35 and

increasing the static one ls

Fig. 10 Difference between the maximum and saturation values of

the creep–force setting the static friction coefficient ls ¼ 0:45 and

increasing the kinematic one lk
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increase the longitudinal creepage while the lateral one is

set for each experiment. The material and the geometrical

properties for this case are detailed in Table 2.

Four different measured creep curves are presented for

creepages up to 2.5%, varying the normal load (com-

pressing both rollers) and the lateral creepage for each

case. Table 3 compiles the corresponding values for each

case. FASTSIM [18] software is used at this point to obtain

a solution from the contact conditions detailed in Table 2.

This software was developed by Kalker from its Simplified

Theory in order to solve the stationary tangential contact

problem with a low computational cost and an accept-

able precision (with deviations around 10% from

Fig. 11 Difference between the maximum and saturation values of

the creep–force setting the static friction coefficient ls ¼ 0:40 and the

kinematic one lk ¼ 0:30 and increasing the vehicle velocity

Table 2 Values of the test-bench for each case

Shear modulus, G (N/m2) 8.0 9 108

Poisson’s ratio, m (–) 0.28

Roller 1 (wheel) radius, r11 (mm) 170

Roller 1 (wheel) curvature, r12 (mm) 300

Roller (rail) radius, r22 (mm) 106 (flat)

Equivalent vehicle speed, V (km/h) 125

Spin creepage, n3 (�) 0

Table 3 Test-bench set values for each case

Case a Case b Case c Case d

Normal contact force, F3 (kN) 2.0 2.1 2.3 2.3

Lateral creepage, n2 (�) 0 0 0.025 0.120

Friction coefficient, l (–) 0.60 0.48 0.60 0.60

(c)

(b)

(a)

Fig. 12 Theoretical–experimental comparison of creep–force curve

(solid line numerical solution from the proposed model; dashed line

FASTSIM solution; asterisk experimental set 1 from CEIT; open

circle experimental set 2 from CEIT)

29 Page 8 of 10 Tribol Lett (2017) 65:29
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CONTACT if the spin is small). In this model, the dis-

placements in a point depend exclusively on the applied

tractions in that point through the flexibility coefficients

(Winkler model); these flexibility coefficients were adjus-

ted comparing them to the results given by Kalker’s Exact

Theory. Results from FASTSIM and the proposed model

have been plotted in Fig. 12a–d (corresponding to the cases

from a to d) together with the experimental measurements.

FASTSIM solution is found from the friction coefficient

l set in the test-bench for each case. In order to evaluate

the present tangential contact model, the local parameters

ðls; lk; s
^Þ are needed to define the local falling friction

curve lðsÞ and hence run the tangential set of equations

[Eqs. (7), (8)]. The procedure detailed in Sect. 3 is fol-

lowed by detecting the characteristic points ðF
_

; n
_

Þ and

ðF
^

; n
^

Þ of each experimental creep–force curve. Table 4

gathers the results obtained, which fit the measurements

presented in [10].

Experimental sets in Fig. 12a, b seem to certify the non-

negligible effect of the slip-dependent friction coefficient

as indicated by the falling behaviour of the total tangential

force after the maximal transmitted force. Hence, it sug-

gests that the rolling contact problem cannot be modelled

in a realistic way through Simplified Theories, but requires

physical and Exact Theory that permits to include a vari-

able friction coefficient. Furthermore, as mentioned

previously, Fig. 12a, b shows that experimental curves

from CEIT present a less pronounced falling behaviour

than creep curves for real locomotives. Together with the

previous cases, in Fig. 12c, d it can be perceived how the

total force measured for low creepages tends to be below

the theoretical initial slope (defined by the Young’s mod-

ulus) that FASTSIM fits. It seems to indicate that falling

friction reduces the effect of the static coefficient even for

low creepages (when it is assumed that no percentage of

the area of contact is slipping). The numerical creep curve

obtained evaluating the proposed steady-state model

reproduces rather well this behaviour. As seen in Fig. 12a–

b, the creep curve matches the initial slope of the FAS-

TSIM solution for low creepages, but decreases gradually

adapting to the behaviour of the experimental data, even

for negative creepages. The falling friction law through

adopting a second coefficient lk lower than ls seems to

reduce the initial slope of the curve compared with a single

l curve.

Without coinciding perfectly to the experimental set,

location and magnitude of the maximum matches notably

well for Fig. 12a, b, indicating that the previous procedure

seems to be valid for relating both global and local curves.

Finally, the curve is forced to match the saturation value

for higher creepages through the kinematic coefficient

estimated, showing hence that the difference between both

maximum and saturation value is not strongly pronounced.

5 Conclusions

In this work, a method for introducing a falling friction

coefficient in rolling contact mechanics is presented. This

method is suitable for creepages that slightly exceed the

saturation conditions (lower than 3% if the solids in contact

are made of steel), which correspond to the creepage range

in most of the railway dynamic studies. The technique

adopts steady-state conditions, and the friction coefficient

is a function of the local slip velocity through a simplified

Stribeck curve.

The formulation is based on Kalker’s Variational The-

ory, which adopts the non-steady-state hypotheses. All the

same, the literature shows that Variational Theory produces

peaks in the contact traction distribution when two friction

coefficients are implemented. The present approach

Table 4 Parameters of the

falling friction coefficient curve
Case a Case b Case c Case d

Static friction coefficient, ls (–) 0.60 0.49 0.61 0.60

Kinematic friction coefficient, lk (–) 0.62 0.45 0.58 0.57

Local slip saturation value, s
^

(m/s) 0.51 0.41 0.46 0.47

(d)

Fig. 12 continued
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modifies the original method by means of the regulari-

sation of the Coulomb’s law, which eliminates the pres-

ence of such peaks. An additional advantage of the

implementation of the regularisation is a significant

reduction of the computational costs when compared to

the original method thanks to the saving in the number of

equation unknowns.

The implementation of the velocity-dependent friction

coefficient adds new variables that frequently have been

chosen unrealistically in the literature. The present work

develops the constrain equations that establish mathemat-

ical relationships between the different parameters associ-

ated with the falling friction rolling contact problem. These

constrain equations facilitate to build models that produce

realistic results from experimental data. In this respect, the

proposed model reasonably fits the experimental creepage

versus creep–force curves obtained from high-precision

test-bench measurements.

The appearance of the creepage versus creep–force

curves obtained from the proposed methodology does not

differ markedly from the one of a single friction coeffi-

cient. This conclusion is in accordance with previous test-

bench measurements that present a slight decrease in the

tangential force once the maximum is reached.

A global model that fits all the creepage range level is to

the authors’ best knowledge, undone. By considering the

negligible role of the displacements due to the elastic

deformation in high creepage conditions, the present model

can be adequate in traction locomotive problems if a

suitable Stribeck curve is adopted. In such case, the above-

presented constrain equations associated with the parame-

ter set have to be reconsidered.
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