226 research outputs found
Cuidado à Pessoa com úlcera venosa: subconjunto terminológico da classificação internacional para a prática de enfermagem
Introdução: As úlceras venosas são graves problemas de saúde, haja visto a sua alta prevalência na população mundial, serem de tratamento longo, com alta recidiva e causando incapacidades, sofrimento, gastos financeiros e prejuÃzos à qualidade de vida das pessoas que as portam. Organizar a assistência de enfermagem por meio do Processo de Enfermagem para essa prioridade de saúde implica em melhoria da qualidade do cuidado prestado. Objetivos: Elaborar o Subconjunto terminológico da Classificação Internacional para a Prática de Enfermagem (CIPE®) para o cuidado à pessoa com úlcera venosa orientado pela teoria das Necessidades Humanas Básicas de Wanda Aguiar Horta. Construir enunciados de diagnósticos, resultados e intervenções de enfermagem da CIPE® para o cuidado à pessoa com úlcera venosa orientado pela teoria das Necessidades Humanas Básicas de Wanda Aguiar Horta. Validar os enunciados de diagnósticos, resultados e intervenções propostas para o cuidado à pessoa com úlcera venosa. Estruturar o Subconjunto terminológico CIPE® o cuidado à pessoa com úlcera venosa orientado pela teoria das Necessidades Humanas Básicas de Wanda Aguiar Horta. Metodologia: Trata-se de uma pesquisa metodológica que seguiu os seguintes passos. 1) Identificação e validação das evidências empÃricas relacionadas à úlcera venosa descritas na literatura, por meio de uma revisão integrativa de literatura com busca nas bases de dados. 2) Mapeamento das evidências com os termos da CIPE®. 3) Elaboração dos enunciados de Diagnósticos, Resultados e intervenções de enfermagem e construção das Definições Operacionais. 4) Validação de conteúdo por consenso dos enunciados construÃdos de Diagnóstico, Resultados e Intervenções de enfermagem com juÃzes. 5) Organização e estruturação do Subconjunto CIPE® para o cuidado à pessoa com úlcera venosa. Resultado: 86 diagnósticos e 308 resultados de enfermagem validados pelo grupo de juÃzes enfermeiros. Produto: Subconjunto terminológico da CIPE® para o cuidado à pessoa com úlcera venosa. Conclusão: A CIPE® evidenciou-se como uma taxonomia compatÃvel e aplicável à clÃnica do enfermeiro, com potencial para a organização do processo de trabalho. Há a perspectiva de parceria para inclusão a uma disciplina de graduação de enfermagem da Universidade Federal do EspÃrito Santo, assim como incorporação ao Prontuário Eletrônico para utilização dos Enfermeiros da Atenção Básica de Saúde do MunicÃpio de Vitória
Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific
Over the past decades, observations have confirmed decreasing oxygen levels and shoaling of oxygen minimum zones (OMZs) in the tropical oceans. Such changes impact the biogeochemical cycling of micronutrients such as Cd, but the potential consequences are only poorly constrained. Here, we present seawater Cd concentrations and isotope compositions for 12 depth profiles at coastal, nearshore and offshore stations from 4ºS to 14ºS in the eastern tropical South Pacific, where one of the world’s strongest OMZs prevails. The depth profiles of Cd isotopes display high δ114/110 Cd at the surface and decreasing δ114/110 Cd with increasing water depth, consistent with preferential utilization of lighter Cd isotopes during biological uptake in the euphotic zone and subsequent remineralization of the sinking biomass. In the surface and subsurface ocean, seawater displays similar δ114/110 Cd signatures of 0.47 ±0.23‰ to 0.82±0.05‰ across the entire eastern tropical South Pacific despite highly variable Cd concentrations between 0.01 and 0.84 nmol/kg. This observation, best explained by an open system steady-state fractionation model, contrasts with previous studies of the South Atlantic and South Pacific Oceans, where only Cd-deficient waters have a relatively constant Cd isotope signature. For the subsurface to about 500 m depth, the variability of seawater Cd isotope compositions can be modeled by mixing of remineralized Cd with subsurface water from the base of the mixed layer. In the intermediate and deep eastern tropical South Pacific (>500 m), seawater [Cd] and δ114/110 Cd appear to follow the distribution and mixing of major water masses. We identified modified AAIW of the ETSP to be more enriched in [Cd] than AAIW from the source region, whilst both water masses have similar δ114/110 Cd. A mass balance estimate thus constrains a δ114/110 Cd of between 0.38‰ and 0.56‰ for the accumulated remineralized Cd in the ETSP. Nearly all samples show a tight coupling of Cd and PO4 concentrations, whereby surface and deeper waters define two distinct linear trends. However, seawater at a coastal station located within a pronounced plume of H2S, is depleted in [Cd] and features significantly higher δ114/110 Cd. This signature is attributed to the formation of authigenic CdS with preferential incorporation of lighter Cd isotopes. The process follows a Rayleigh fractionation model with a fractionation factor of α114/110 Cdseawater-CdS = 1.00029. Further deviations from the deep Cd-PO4 trend were observed for samples with O2 < 10 µmol/kg and are best explained by in situ CdS precipitation within the decaying organic matter even though dissolved H2S was not detectable in ambient seawater
Polarization investigation of a tunable high-speed short-wavelength bulk-micromachined MEMS-VCSEL
We report the investigation of the state of polarization (SOP) of a tunable vertical-cavity surface-emitting laser (VCSEL) operating near 850 nm with a mode-hop free single-mode tuning range of about 12 nm and an amplitude modulation bandwidth of about 5 GHz. In addition, the effect of a sub-wavelength grating on the device and its influence on the polarization stability and polarization switching has been investigated. The VCSEL with an integrated sub-wavelength grating shows a stable SOP with a polarization mode suppression ratio (PMSR) more than 35 dB during the tuning
Tuneable VCSEL aiming for the application in interconnects and short haul systems
Widely tunable vertical cavity surface emitting lasers (VCSEL) are of high interest for optical communications, gas spectroscopy and fiber-Bragg-grating measurements. In this paper we present tunable VCSEL operating at wavelength around 850 nm and 1550 nm with tuning ranges up to 20 nm and 76 nm respectively. The first versions of VCSEL operating at 1550 nm with 76 nm tuning range and an output power of 1.3mW were not designed for high speed modulation, but for applications where only stable continious tuning is essential (e.g. gas sensing). The next step was the design of non tunable VCSEL showing high speed modulation frequencies of 10 GHz with side mode supression ratios beyond 50 dB. The latest version of these devices show record output powers of 6.7mW at 20 °C and 3mW at 80 °C. The emphasis of our present and future work lies on the combination of both technologies. The tunable VCSEL operating in the 850 nm-region reaches a modulation bandwidth of 5.5GHz with an output power of 0.8mW
Precise sound characteristics drive plasticity in the primary auditory cortex with VNS-sound pairing
IntroductionRepeatedly pairing a tone with vagus nerve stimulation (VNS) alters frequency tuning across the auditory pathway. Pairing VNS with speech sounds selectively enhances the primary auditory cortex response to the paired sounds. It is not yet known how altering the speech sounds paired with VNS alters responses. In this study, we test the hypothesis that the sounds that are presented and paired with VNS will influence the neural plasticity observed following VNS-sound pairing.MethodsTo explore the relationship between acoustic experience and neural plasticity, responses were recorded from primary auditory cortex (A1) after VNS was repeatedly paired with the speech sounds ‘rad’ and ‘lad’ or paired with only the speech sound ‘rad’ while ‘lad’ was an unpaired background sound.ResultsPairing both sounds with VNS increased the response strength and neural discriminability of the paired sounds in the primary auditory cortex. Surprisingly, pairing only ‘rad’ with VNS did not alter A1 responses.DiscussionThese results suggest that the specific acoustic contrasts associated with VNS can powerfully shape neural activity in the auditory pathway. Methods to promote plasticity in the central auditory system represent a new therapeutic avenue to treat auditory processing disorders. Understanding how different sound contrasts and neural activity patterns shape plasticity could have important clinical implications
A review of the stable istotope bio-geochemistry of the global silicon cycle and its associated trace elements
Silicon (Si) is the second most abundant element in the Earth's crust and is an important nutrient in the ocean. The global Si cycle plays a critical role in regulating primary productivity and carbon cycling on the continents and in the oceans. Development of the analytical tools used to study the sources, sinks, and fluxes of the global Si cycle (e.g., elemental and stable isotope ratio data for Ge, Si, Zn, etc.) have recently led to major advances in our understanding of the mechanisms and processes that constrain the cycling of Si in the modern environment and in the past. Here, we provide background on the geochemical tools that are available for studying the Si cycle and highlight our current understanding of the marine, freshwater and terrestrial systems. We place emphasis on the geochemistry (e.g., Al/Si, Ge/Si, Zn/Si, δ13C, δ15N, δ18O, δ30Si) of dissolved and biogenic Si, present case studies, such as the Silicic Acid Leakage Hypothesis, and discuss challenges associated with the development of these environmental proxies for the global Si cycle. We also discuss how each system within the global Si cycle might change over time (i.e., sources, sinks, and processes) and the potential technical and conceptual limitations that need to be considered for future studies
Household networks and emergent territory: a GIS study of Chumash households, villages and rock-art in South-Central California
Elite households of the Californian Chumash have been studied in order to understand the development of Late Holocene hunter-gatherer alliance networks. Equally, models of what has been termed ‘tribelet territories’ have been used to describe land ownership within larger Californian concepts. Surprisingly little research has explicitly addressed issues of how such territories may have developed. In this article, we turn to DeLanda’s philosophy of social complexity to consider how Chumash households may have underpinned the development of tribelet territories and the political implications for their articulation with wider alliances. Importantly, utilizing Geographic Information Systems (GIS), we analyse potential mobility patterns in relation to households, villages and rock-art locales in a case from the Emigdiano Chumash. The results suggest that the painting of rock art was imbricated within processes of territorialization, and that the local placement of art reflects which villages were home to particularly high-status households
Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru
Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The production of organic material is fueled by upwelling of nutrient-rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors can modify surface production and related biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predictions of their future functioning requires understanding of the mechanisms driving the biogeochemical cycles therein. In this field experiment, we used in situ mesocosms as tools to improve our mechanistic understanding of processes controlling organic matter cycling in the coastal Peruvian upwelling system. Eight mesocosms, each with a volume of ∼55 m3, were deployed for 50 d ∼6 km off Callao (12∘ S) during austral summer 2017, coinciding with a coastal El Niño phase. After mesocosm deployment, we collected subsurface waters at two different locations in the regional oxygen minimum zone (OMZ) and injected these into four mesocosms (mixing ratio ≈1.5 : 1 mesocosm: OMZ water). The focus of this paper is on temporal developments of organic matter production, export, and stoichiometry in the individual mesocosms. The mesocosm phytoplankton communities were initially dominated by diatoms but shifted towards a pronounced dominance of the mixotrophic dinoflagellate (Akashiwo sanguinea) when inorganic nitrogen was exhausted in surface layers. The community shift coincided with a short-term increase in production during the A. sanguinea bloom, which left a pronounced imprint on organic matter C : N : P stoichiometry. However, C, N, and P export fluxes did not increase because A. sanguinea persisted in the water column and did not sink out during the experiment. Accordingly, export fluxes during the study were decoupled from surface production and sustained by the remaining plankton community. Overall, biogeochemical pools and fluxes were surprisingly constant for most of the experiment. We explain this constancy by light limitation through self-shading by phytoplankton and by inorganic nitrogen limitation which constrained phytoplankton growth. Thus, gain and loss processes remained balanced and there were few opportunities for blooms, which represents an event where the system becomes unbalanced. Overall, our mesocosm study revealed some key links between ecological and biogeochemical processes for one of the most economically important regions in the oceans
Direction-Selective Circuitry in Rat Retina Develops Independently of GABAergic, Cholinergic and Action Potential Activity
The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience
- …