42 research outputs found

    Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading

    Get PDF
    Background: Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings: In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance: Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results fro

    Cortactin Phosphorylated by ERK1/2 Localizes to Sites of Dynamic Actin Regulation and Is Required for Carcinoma Lamellipodia Persistence

    Get PDF
    Tumor cell motility and invasion is governed by dynamic regulation of the cortical actin cytoskeleton. The actin-binding protein cortactin is commonly upregulated in multiple cancer types and is associated with increased cell migration. Cortactin regulates actin nucleation through the actin related protein (Arp)2/3 complex and stabilizes the cortical actin cytoskeleton. Cortactin is regulated by multiple phosphorylation events, including phosphorylation of S405 and S418 by extracellular regulated kinases (ERK)1/2. ERK1/2 phosphorylation of cortactin has emerged as an important positive regulatory modification, enabling cortactin to bind and activate the Arp2/3 regulator neuronal Wiskott-Aldrich syndrome protein (N-WASp), promoting actin polymerization and enhancing tumor cell movement.In this report we have developed phosphorylation-specific antibodies against phosphorylated cortactin S405 and S418 to analyze the subcellular localization of this cortactin form in tumor cells and patient samples by microscopy. We evaluated the interplay between cortactin S405 and S418 phosphorylation with cortactin tyrosine phosphorylation in regulating cortactin conformational forms by Western blotting. Cortactin is simultaneously phosphorylated at S405/418 and Y421 in tumor cells, and through the use of point mutant constructs we determined that serine and tyrosine phosphorylation events lack any co-dependency. Expression of S405/418 phosphorylation-null constructs impaired carcinoma motility and adhesion, and also inhibited lamellipodia persistence monitored by live cell imaging.Cortactin phosphorylated at S405/418 is localized to sites of dynamic actin assembly in tumor cells. Concurrent phosphorylation of cortactin by ERK1/2 and tyrosine kinases enables cells with the ability to regulate actin dynamics through N-WASp and other effector proteins by synchronizing upstream regulatory pathways, confirming cortactin as an important integration point in actin-based signal transduction. Reduced lamellipodia persistence in cells with S405/418A expression identifies an essential motility-based process reliant on ERK1/2 signaling, providing additional understanding as to how this pathway impacts tumor cell migration

    Stoichiometry of at the During Their Using Total Internal Reflection Fluorescent (TIRF) Live Imaging and Single-Molecule Tracking

    No full text
    International audienceDetermination of protein stoichiometry in living cells is key to understanding basic biological processes. This is particularly important for receptor-mediated endocytosis, a highly regulated mechanism that requires the sequential assembly of numerous factors. Here, we describe a quantitative approach to analyze receptor clustering dynamics at the plasma membrane. Our workflow combines TIRF live imaging of a CRISPR-Cas9-edited cell line expressing a GFP-tagged receptor in a physiological relevant environment, a calibration technique for single-molecule analysis of GFP, and detection and tracking with an open-source software. This method allows to determine the number of receptor molecules at the plasma membrane in real time

    Nanoscale manipulation of membrane curvature for probing endocytosis in live cells

    No full text
    Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells

    Icy: an open bioimage informatics platform for extended reproducible research

    No full text
    International audienceCurrent research in biology uses evermore complex computational and imaging tools. Here we describe Icy, a collaborative bioimage informatics platform that combines a community website for contributing and sharing tools and material, and software with a high-end visual programming framework for seamless development of sophisticated imaging workflows. Icy extends the reproducible research principles, by encouraging and facilitating the reusability, modularity, standardization and management of algorithms and protocols. Icy is free, open-source and available at http://icy.bioimageanalysis.org/

    Genome-edited human stem cells expressing fluorescently labeled endocytic markers allow quantitative analysis of clathrin-mediated endocytosis during differentiation

    Get PDF
    We developed a general approach for investigation of how cellular processes become adapted for specific cell types during differentiation. Previous studies reported substantial differences in the morphology and dynamics of clathrin-mediated endocytosis (CME) sites. However, associating specific CME properties with distinct differentiated cell types and determining how these properties are developmentally specified during differentiation have been elusive. Using genome-edited human embryonic stem cells, and isogenic fibroblasts and neuronal progenitor cells derived from them, we established by live-cell imaging and platinum replica transmission electron microscopy that CME site dynamics and ultrastructure on the plasma membrane are precisely reprogrammed during differentiation. Expression levels for the endocytic adaptor protein AP2ÎĽ2 were found to underlie dramatic changes in CME dynamics and structure. Additionally, CME dependency on actin assembly and phosphoinositide-3 kinase activity are distinct for each cell type. Collectively, our results demonstrate that key CME properties are reprogrammed during differentiation at least in part through AP2ÎĽ2 expression regulation
    corecore