397 research outputs found
Origin of Gap Anisotropy in Spin Fluctuation Models of the Fe-pnictides
We discuss the large gap anisotropy found for the A1g (s-wave) state in RPA
spin-fluctuation and functional renormalization group calculations and show how
the simple arguments leading to isotropic sign-switched s-wave states in these
systems need to be supplemented by a consideration of pair scattering within
Fermi surface sheets and between the individual electron sheets as well. In
addition, accounting for the orbital makeup of the states on the Fermi surface
is found to be crucial.Comment: 6 pages, 7 figure
Local modulations of the spin-fluctuation mediated pairing interaction by impurities in d-wave superconductors
We present a self-consistent real space formulation of spin-fluctuation
mediated d-wave pairing. By calculating all relevant inhomogeneous spin and
charge susceptibilities in real space within the random phase approximation
(RPA), we obtain the effective pairing interaction and study its spatial
dependence near both local potential and hopping impurities. A remarkably large
enhancement of the pairing interaction may be obtained near the impurity site.
We discuss the relevance of our result to inhomogeneities observed by scanning
tunneling spectroscopy on the surface of cuprate superconductors.Comment: 8 pages, 7 figure
Tunneling spectroscopy for probing orbital anisotropy in iron pnictides
Using realistic multi-orbital tight-binding Hamiltonians and the T-matrix
formalism, we explore the effects of a non-magnetic impurity on the local
density of states in Fe-based compounds. We show that scanning tunneling
spectroscopy (STS) has very specific anisotropic signatures that track the
evolution of orbital splitting (OS) and antiferromagnetic gaps. Both
anisotropies exhibit two patterns that split in energy with decreasing
temperature, but for OS these two patterns map onto each other under 90 degree
rotation. STS experiments that observe these signatures should expose the
underlying magnetic and orbital order as a function of temperature across
various phase transitions.Comment: 12 pages, 9 figures, replacement with minor changes suggested by
referee
Tc suppression and resistivity in cuprates with out of plane defects
Recent experiments introducing controlled disorder into optimally doped
cuprate superconductors by both electron irradiation and chemical substitution
have found unusual behavior in the rate of suppression of the critical
temperature Tc vs. increase in residual resistivity. We show here that the
unexpected discovery that the rate of Tc suppression vs. resistivity is
stronger for out-of-plane than for in-plane impurities may be explained by
consistent calculation of both Tc and resistivity if the potential scattering
is assumed to be nearly forward in nature. For realistic models of impurity
potentials, we further show that significant deviations from the universal
Abrikosov-Gor'kov Tc suppression behavior may be expected for out of plane
impurities.Comment: 6 pages, 5 figure
Supercurrent through grain boundaries in the presence of strong correlations
Strong correlations are known to severely reduce the mobility of charge
carriers near half-filling and thus have an important influence on the current
carrying properties of grain boundaries in the high- cuprates. In this
work we present an extension of the Gutzwiller projection approach to treat
electronic correlations below as well as above half-filling consistently. We
apply this method to investigate the critical current through grain boundaries
with a wide range of misalignment angles for electron- and hole-doped systems.
For the latter excellent agreement with experimental data is found. We further
provide a detailed comparison to an analogous weak-coupling evaluation.Comment: 4 pages, 3 figure
Local density of states at polygonal boundaries of d-wave superconductors
Besides the well-known existence of Andreev bound states, the zero-energy
local density of states at the boundary of a d-wave superconductor strongly
depends on the boundary geometry itself. In this work, we examine the influence
of both a simple wedge-shaped boundary geometry and a more complicated
polygonal or faceted boundary structure on the local density of states. For a
wedge-shaped boundary geometry, we find oscillations of the zero-energy density
of states in the corner of the wedge, depending on the opening angle of the
wedge. Furthermore, we study the influence of a single Abrikosov vortex
situated near a boundary, which is of either macroscopic or microscopic
roughness.Comment: 10 pages, 11 figures; submitted to Phys. Rev.
Vortex core shrinkage in a two gap superconductor: application to MgB2
As a model for the vortex core in MgB2 we study a two band model with a clean
sigma band and a dirty pi band. We present calculations of the vortex core size
in both bands as a function of temperature and show that there exists a
Kramer-Pesch effect in both bands even though only one of the bands is in the
clean limit. We present calculations for different pi band diffusivities and
coherence lengths.Comment: Submitted to M2S-HTSC-VIII conference proceeding
Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2
Despite the wealth of experimental data on the Fe-pnictide compounds of the
KFe2As2-type, K = Ba, Ca, or Sr, the main theoretical work based on
multiorbital tight-binding models has been restricted so far to the study of
the related 1111 compounds. This can be ascribed to the more three dimensional
electronic structure found by ab initio calculations for the 122 materials,
making this system less amenable to model development. In addition, the more
complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does
not allow a straightforward unfolding of the electronic band structure into an
effective 1Fe/unit cell BZ. Here we present an effective 5-orbital
tight-binding fit of the full DFT band structure for BaFeAs including the kz
dispersions. We compare the 5-orbital spin fluctuation model to one previously
studied for LaOFeAs and calculate the RPA enhanced susceptibility. Using the
fluctuation exchange approximation to determine the leading pairing
instability, we then examine the differences between a strictly two dimensional
model calculation over a single kz cut of the BZ and a completely three
dimensional approach. We find pairing states quite similar to the 1111
materials, with generic quasi-isotropic pairing on the hole sheets and nodal
states on the electron sheets at kz = 0 which however are gapped as the system
is hole doped. On the other hand, a substantial kz dependence of the order
parameter remains, with most of the pairing strength deriving from processes
near kz = pi. These states exhibit a tendency for an enhanced anisotropy on the
hole sheets and a reduced anisotropy on the electron sheets near the top of the
BZ.Comment: 12 pages, 15 figure
Induced Kramer-Pesch-Effect in a Two Gap Superconductor: Application to MgB2
The size of the vortex core in a clean superconductor is strongly temperature
dependent and shrinks with decreasing temperature, decreasing to zero for T ->
0. We study this so-called Kramer-Pesch effect both for a single gap
superconductor and for the case of a two gap superconductor using parameters
appropriate for Magnesium Diboride. Usually, the Kramer-Pesch effect is absent
in the dirty limit. Here, we show that the Kramer-Pesch effect exists in both
bands of a two gap superconductor even if only one of the two bands is in the
clean limit and the other band in the dirty limit, a case appropriate for MgB2.
In this case an induced Kramer-Pesch effect appears in the dirty band. Besides
numerical results we also present an analytical model for the spatial variation
of the pairing potential in the vicinity of the vortex center that allows a
simple calculation of the vortex core radius even in the limit T -> 0.Comment: 12 pages, 12 figure
Proximity fingerprint of s+- superconductivity
We suggest a straightforward and unambiguous test to identify possible
opposite signs of superconducting order parameter in different bands proposed
for iron-based superconductors (s+- state). We consider proximity effect in a
weakly coupled sandwich composed of a s+- superconductor and thin layer of
s-wave superconductor. In such system the s-wave order parameter is coupled
differently with different s+- gaps and it typically aligns with one of these
gaps. This forces the other s+- gap to be anti-aligned with the s-wave gap. In
such situation the aligned band induces a peak in the s-wave density of states
(DoS), while the anti-aligned band induces a dip. Observation of such
contact-induced negative feature in the s-wave DoS would provide a definite
proof for s+- superconductivity.Comment: 4 pages, one figur
- …