480 research outputs found

    Supercurrent through grain boundaries in the presence of strong correlations

    Full text link
    Strong correlations are known to severely reduce the mobility of charge carriers near half-filling and thus have an important influence on the current carrying properties of grain boundaries in the high-TcT_c cuprates. In this work we present an extension of the Gutzwiller projection approach to treat electronic correlations below as well as above half-filling consistently. We apply this method to investigate the critical current through grain boundaries with a wide range of misalignment angles for electron- and hole-doped systems. For the latter excellent agreement with experimental data is found. We further provide a detailed comparison to an analogous weak-coupling evaluation.Comment: 4 pages, 3 figure

    Tunneling spectroscopy for probing orbital anisotropy in iron pnictides

    Full text link
    Using realistic multi-orbital tight-binding Hamiltonians and the T-matrix formalism, we explore the effects of a non-magnetic impurity on the local density of states in Fe-based compounds. We show that scanning tunneling spectroscopy (STS) has very specific anisotropic signatures that track the evolution of orbital splitting (OS) and antiferromagnetic gaps. Both anisotropies exhibit two patterns that split in energy with decreasing temperature, but for OS these two patterns map onto each other under 90 degree rotation. STS experiments that observe these signatures should expose the underlying magnetic and orbital order as a function of temperature across various phase transitions.Comment: 12 pages, 9 figures, replacement with minor changes suggested by referee

    Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2

    Full text link
    Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2-type, K = Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective 5-orbital tight-binding fit of the full DFT band structure for BaFeAs including the kz dispersions. We compare the 5-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the RPA enhanced susceptibility. Using the fluctuation exchange approximation to determine the leading pairing instability, we then examine the differences between a strictly two dimensional model calculation over a single kz cut of the BZ and a completely three dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at kz = 0 which however are gapped as the system is hole doped. On the other hand, a substantial kz dependence of the order parameter remains, with most of the pairing strength deriving from processes near kz = pi. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.Comment: 12 pages, 15 figure

    Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface

    Get PDF
    The steady state visual evoked protocol has recently become a popular paradigm in brain–computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control

    Phlebotomine Fauna (Diptera: Psychodidae) and Putative Vectors of Leishmaniases in Impacted Area by Hydroelectric Plant, State of Tocantins, Brazil

    Get PDF
    Although leishmaniases are regarded as serious public health issues in the State of Tocantins, as consequence of the impact of environmental changes, small advances in taxonomic and ecological studies of Phlebotominae fauna are taking place in this state. The present study aimed to improve the knowledge about the sand flies, as well as about the aspects of the bioecology of leishmaniases vectors from Porto Nacional, a city that was directly impacted by the construction of Luís Eduardo Magalhães Hydroelectric Plant (HEP – Lajeado)., the vector of American Cutaneous Leishmaniasis (ACL), predominated in rural areas. The frequency and habits of sand fly vectors are discussed considering environmental characteristics and climatic factors. in periurban area of the city

    Repulsion and attraction in high Tc superconductors

    Full text link
    The influence of repulsion and attraction in high-Tc superconductors to the gap functions is studied. A systematic method is proposed to compute the gap functions using the irreducible representations of the point group. It is found that a pure s-wave superconductivity exists only at very low temperatures, and attractive potentials on the near shells significantly expand the gap functions and increase significantly the critical temperature of superconductivity. A strong on-site repulsion drives the A1gA_{1g} gap into a B1gB_{1g} gap. It is expected that superconductivity with the A1gA_{1g} symmetry reaches a high critical temperature due to the cooperation of the on-site and the next-nearest neighbor attractions.Comment: 4 pages, 5figure

    Superconductivity in striped and multi-Fermi-surface Hubbard models: From the cuprates to the pnictides

    Full text link
    Single- and multi-band Hubbard models have been found to describe many of the complex phenomena that are observed in the cuprate and iron-based high-temperature superconductors. Simulations of these models therefore provide an ideal framework to study and understand the superconducting properties of these systems and the mechanisms responsible for them. Here we review recent dynamic cluster quantum Monte Carlo simulations of these models, which provide an unbiased view of the leading correlations in the system. In particular, we discuss what these simulations tell us about superconductivity in the homogeneous 2D single-orbital Hubbard model, and how charge stripes affect this behavior. We then describe recent simulations of a bilayer Hubbard model, which provides a simple model to study the type and nature of pairing in systems with multiple Fermi surfaces such as the iron-based superconductors.Comment: Published as part of Superstripes 2011 (Rome) conference proceeding

    Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides

    Get PDF
    Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctuation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave (A1gA_{1g}) symmetry (s±s^\pm). In particular we focus on the role of the hole pocket at the (π,π)(\pi,\pi) point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki {\it et al.}, and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic s±s^\pm state. The pocket's contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the RPA fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap

    Electrical Transport Properties of Vanadium‐Doped Bi2Te2.4Se0.6

    Get PDF
    Vanadium‐doped Bi2–xTe2.4Se0.6 single crystals, with x = 0.015 and 0.03, are grown by the Bridgman method. Bandstructure characterization by angle‐resolved photoemission spectroscopy (ARPES) measurements shows gapless topological surface states for both vanadium concentrations. The Van‐der‐Pauw resistivity, the Hall charge carrier density, and the mobility in the temperature range from 0.3 to 300 K are strongly dependent on vanadium concentration, with carrier densities as low as 1.5 × 1016 cm−3 and mobilities as high as 570 cm2 V−1s−1. As expected for transport in gapless topological surface states, the resistivity, carrier density, and mobility are constant below 10 K. The magnetoresistance shows weak antilocalization for both vanadium concentrations in the same temperature range. The weak antilocalization is analyzed with the Hikami–Larkin–Nagaoka model, which yields phase‐coherence lengths of up to 250 nm for x = 0.015.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Helmholtz-Gemeinschaft http://dx.doi.org/10.13039/501100001656Peer Reviewe
    corecore