72 research outputs found

    X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating

    Get PDF
    A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s^(−1) are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks, and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases

    A genetic algorithm based method for stringent haplotyping of family data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The linkage phase, or haplotype, is an extra level of information that in addition to genotype and pedigree can be useful for reconstructing the inheritance pattern of the alleles in a pedigree, and computing for example Identity By Descent probabilities. If a haplotype is provided, the precision of estimated IBD probabilities increases, as long as the haplotype is estimated without errors. It is therefore important to only use haplotypes that are strongly supported by the available data for IBD estimation, to avoid introducing new errors due to erroneous linkage phases.</p> <p>Results</p> <p>We propose a genetic algorithm based method for haplotype estimation in family data that includes a stringency parameter. This allows the user to decide the error tolerance level when inferring parental origin of the alleles. This is a novel feature compared to existing methods for haplotype estimation. We show that using a high stringency produces haplotype data with few errors, whereas a low stringency provides haplotype estimates in most situations, but with an increased number of errors.</p> <p>Conclusion</p> <p>By including a stringency criterion in our haplotyping method, the user is able to maintain the error rate at a suitable level for the particular study; one can select anything from haplotyped data with very small proportion of errors and a higher proportion of non-inferred haplotypes, to data with phase estimates for every marker, when haplotype errors are tolerable. Giving this choice makes the method more flexible and useful in a wide range of applications as it is able to fulfil different requirements regarding the tolerance for haplotype errors, or uncertain marker-phases.</p

    British Society of Gastroenterology Best Practice Guidance: outpatient management of cirrhosis - part 3: special circumstances

    Get PDF
    \ua9 2023 BMJ Publishing Group. All rights reserved.The prevalence of cirrhosis has risen significantly over recent decades and is predicted to rise further. Widespread use of non-invasive testing means cirrhosis is increasingly diagnosed at an earlier stage. Despite this, there are significant variations in outcomes in patients with cirrhosis across the UK, and patients in areas with higher levels of deprivation are more likely to die from their liver disease. This three-part best practice guidance aims to address outpatient management of cirrhosis, in order to standardise care and to reduce the risk of progression, decompensation and mortality from liver disease. Part 1 addresses outpatient management of compensated cirrhosis: screening for hepatocellular cancer, varices and osteoporosis, vaccination and lifestyle measures. Part 2 concentrates on outpatient management of decompensated disease including management of ascites, encephalopathy, varices, nutrition as well as liver transplantation and palliative care. In this, the third part of the guidance, we focus on special circumstances encountered in managing people with cirrhosis, namely surgery, pregnancy, travel, managing bleeding risk for invasive procedures and portal vein thrombosis

    British Society of Gastroenterology Best Practice Guidance: outpatient management of cirrhosis - part 1: compensated cirrhosis

    Get PDF
    \ua9 2023 BMJ Publishing Group. All rights reserved.The prevalence of cirrhosis has risen significantly over recent decades and is predicted to rise further. Widespread use of non-invasive testing means cirrhosis is increasingly diagnosed at an earlier stage. Despite this, there are significant variations in outcomes in patients with cirrhosis across the UK, and patients in areas with higher levels of deprivation are more likely to die from their liver disease. This three-part best practice guidance aims to address outpatient management of cirrhosis, in order to standardise care and to reduce the risk of progression, decompensation and mortality from liver disease. Here, in part one, we focus on outpatient management of compensated cirrhosis, encompassing hepatocellular cancer surveillance, screening for varices and osteoporosis, vaccination and lifestyle measures. We also introduce a compensated cirrhosis care bundle for use in the outpatient setting. Part two concentrates on outpatient management of decompensated disease including management of ascites, encephalopathy, varices, nutrition as well as liver transplantation and palliative care. The third part of the guidance covers special circumstances encountered in managing people with cirrhosis: surgery, pregnancy, travel, managing bleeding risk for invasive procedures and portal vein thrombosis

    Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values

    Get PDF
    The aim of this paper was to compare the effect of haplotype definition on the precision of QTL-mapping and on the accuracy of predicted genomic breeding values. In a multiple QTL model using identity-by-descent (IBD) probabilities between haplotypes, various haplotype definitions were tested i.e. including 2, 6, 12 or 20 marker alleles and clustering base haplotypes related with an IBD probability of > 0.55, 0.75 or 0.95. Simulated data contained 1100 animals with known genotypes and phenotypes and 1000 animals with known genotypes and unknown phenotypes. Genomes comprising 3 Morgan were simulated and contained 74 polymorphic QTL and 383 polymorphic SNP markers with an average r2 value of 0.14 between adjacent markers. The total number of haplotypes decreased up to 50% when the window size was increased from two to 20 markers and decreased by at least 50% when haplotypes related with an IBD probability of > 0.55 instead of > 0.95 were clustered. An intermediate window size led to more precise QTL mapping. Window size and clustering had a limited effect on the accuracy of predicted total breeding values, ranging from 0.79 to 0.81. Our conclusion is that different optimal window sizes should be used in QTL-mapping versus genome-wide breeding value prediction

    Estimating genetic diversity across the neutral genome with the use of dense marker maps

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of high throughput DNA typing, dense marker maps have become available to investigate genetic diversity on specific regions of the genome. The aim of this paper was to compare two marker based estimates of the genetic diversity in specific genomic regions lying in between markers: IBD-based genetic diversity and heterozygosity.</p> <p>Methods</p> <p>A computer simulated population was set up with individuals containing a single 1-Morgan chromosome and 1665 SNP markers and from this one, an additional population was produced with a lower marker density i.e. 166 SNP markers. For each marker interval based on adjacent markers, the genetic diversity was estimated either by IBD probabilities or heterozygosity. Estimates were compared to each other and to the true genetic diversity. The latter was calculated for a marker in the middle of each marker interval that was not used to estimate genetic diversity.</p> <p>Results</p> <p>The simulated population had an average minor allele frequency of 0.28 and an LD (r<sup>2</sup>) of 0.26, comparable to those of real livestock populations. Genetic diversities estimated by IBD probabilities and by heterozygosity were positively correlated, and correlations with the true genetic diversity were quite similar for the simulated population with a high marker density, both for specific regions (r = 0.19-0.20) and large regions (r = 0.61-0.64) over the genome. For the population with a lower marker density, the correlation with the true genetic diversity turned out to be higher for the IBD-based genetic diversity.</p> <p>Conclusions</p> <p>Genetic diversities of ungenotyped regions of the genome (i.e. between markers) estimated by IBD-based methods and heterozygosity give similar results for the simulated population with a high marker density. However, for a population with a lower marker density, the IBD-based method gives a better prediction, since variation and recombination between markers are missed with heterozygosity.</p

    A gene frequency model for QTL mapping using Bayesian inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information for mapping of quantitative trait loci (QTL) comes from two sources: linkage disequilibrium (non-random association of allele states) and cosegregation (non-random association of allele origin). Information from LD can be captured by modeling conditional means and variances at the QTL given marker information. Similarly, information from cosegregation can be captured by modeling conditional covariances. Here, we consider a Bayesian model based on gene frequency (BGF) where both conditional means and variances are modeled as a function of the conditional gene frequencies at the QTL. The parameters in this model include these gene frequencies, additive effect of the QTL, its location, and the residual variance. Bayesian methodology was used to estimate these parameters. The priors used were: logit-normal for gene frequencies, normal for the additive effect, uniform for location, and inverse chi-square for the residual variance. Computer simulation was used to compare the power to detect and accuracy to map QTL by this method with those from least squares analysis using a regression model (LSR).</p> <p>Results</p> <p>To simplify the analysis, data from unrelated individuals in a purebred population were simulated, where only LD information contributes to map the QTL. LD was simulated in a chromosomal segment of 1 cM with one QTL by random mating in a population of size 500 for 1000 generations and in a population of size 100 for 50 generations. The comparison was studied under a range of conditions, which included SNP density of 0.1, 0.05 or 0.02 cM, sample size of 500 or 1000, and phenotypic variance explained by QTL of 2 or 5%. Both 1 and 2-SNP models were considered. Power to detect the QTL for the BGF, ranged from 0.4 to 0.99, and close or equal to the power of the regression using least squares (LSR). Precision to map QTL position of BGF, quantified by the mean absolute error, ranged from 0.11 to 0.21 cM for BGF, and was better than the precision of LSR, which ranged from 0.12 to 0.25 cM.</p> <p>Conclusions</p> <p>In conclusion given a high SNP density, the gene frequency model can be used to map QTL with considerable accuracy even within a 1 cM region.</p
    • …
    corecore