567 research outputs found

    Confirmation of co-denitrification in grazed grassland

    Get PDF
    peer-reviewedPasture-based livestock systems are often associated with losses of reactive forms of nitrogen (N) to the environment. Research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions are still poorly characterized, both in terms of the processes involved and their magnitude, due to financial and methodological constraints. Relatively few studies have focused on quantifying N2 losses in vivo and fewer still have examined the relative contribution of the different N2 emission processes, particularly in grazed pastures. We used a combination of a high 15N isotopic enrichment of applied N with a high precision of determination of 15N isotopic enrichment by isotope-ratio mass spectrometry to measure N2 emissions in the field. We report that 55.8 g N m−2 (95%, CI 38 to 77 g m−2) was emitted as N2 by the process of co-denitrification in pastoral soils over 123 days following urine deposition (100 g N m−2), compared to only 1.1 g N m−2 (0.4 to 2.8 g m−2) from denitrification. This study provides strong evidence for co-denitrification as a major N2 production pathway, which has significant implications for understanding the N budgets of pastoral ecosystems.The authors are grateful for the funding that was provided through the Research Stimulus Fund Program administered by the Department of Agriculture & Food under the National Development Plan 2007–2013 RSF 07536. The first author is grateful for the funding provided by Teagasc through the Walsh Fellowship Scheme

    Seasonal diet changes in elephant and impala in mopane woodland

    Get PDF
    Elephant and impala as intermediate feeders, having a mixed diet of grass and browse, respond to seasonal fluctuations of forage quality by changing their diet composition. We tested the hypotheses that (1) the decrease in forage quality is accompanied by a change in diet from more monocots in the wet season to more dicots in the dry season and that that change is more pronounced and faster in impala than in elephant; (2) mopane (Colophospermum mopane), the most abundant dicot species, is the most important species in the elephant diet in mopane woodland, whereas impala feed relatively less on mopane due to the high condensed tannin concentration; and (3) impala on nutrient-rich soils have a diet consisting of more grass and change later to diet of more browse than impala on nutrient-poor soils. The phosphorus content and in vitro digestibility of monocots decreased and the NDF content increased significantly towards the end of the wet season, whereas in dicots no significant trend could be detected. We argue that this decreasing monocot quality caused elephant and impala to consume more dicots in the dry season. Elephant changed their diet gradually over a 16-week period from 70% to 25% monocots, whereas impala changed diets rapidly (2-4 weeks) from 95% to 70% monocots. For both elephants and impala, there was a positive correlation between percentage of monocots and dicots in the diet and the in vitro digestibility of these forage items. Mopane was the most important dicot species in the elephant diet and its contribution to the diet increased significantly in the dry season, whereas impala selected other dicot species. On nutrient-rich gabbroic soils, impala ate significantly more monocots than impala from nutrient-poor granitic soils, which was related to the higher in vitro digestibility of the monocots on gabbroic soil. Digestibility of food items appears to be an important determinant of diet change from the wet to the dry season in impala and elephants

    Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors

    Full text link
    Quasiclassic Uzadel equations for two-band superconductors in the dirty limit with the account of both intraband and interband scattering by nonmagnetic impurities are derived for any anisotropic Fermi surface. From these equations the Ginzburg-Landau equations, and the critical temperature TcT_c are obtained. An equation for the upper critical field, which determines both the temperature dependence of Hc2(T)H_{c2}(T) and the orientational dependence of Hc2(θ)H_{c2}(\theta) as a function of the angle θ\theta between H{\bf H} and the c-axis is obtained. It is shown that the shape of the Hc2(T)H_{c2}(T) curve essentially depends on the ratio of the intraband electron diffusivities D1D_1 and D1D_1, and can be very different from the standard one-gap dirty limit theory. In particular, the value Hc2(0)H_{c2}(0) can considerably exceed 0.7TcdHc2/dTc0.7T_cdH_{c2}/dT_c, which can have important consequences for applications of MgB2MgB_2. A scaling relation is proposed which enables one to obtain the angular dependence of Hc2(θ)H_{c2}(\theta) from the equation for Hc2H_{c2} at Hc{\bf H}\| c. It is shown that, depending on the relation between D1D_1 and D2D_2, the ratio of the upper critical field Hc2/Hc2H_{c2}^\|/H_{c2}^\perp for Hab{\bf H}\| ab and Hab{\bf H}\perp ab can both increase and decrease as the temperature decreases. Implications of the obtained results for MgB2MgB_2 are discussed

    Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics

    Get PDF
    To help understand the high activity of silver as an oxidation catalyst, e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of methanol to formaldehyde, the interaction and stability of oxygen species at the Ag(111) surface has been studied for a wide range of coverages. Through calculation of the free energy, as obtained from density-functional theory and taking into account the temperature and pressure via the oxygen chemical potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a thin surface-oxide structure is most stable for the temperature and pressure range of ethylene epoxidation and we propose it (and possibly other similar structures) contains the species actuating the catalysis. For higher temperatures, low coverages of chemisorbed oxygen are most stable, which could also play a role in oxidation reactions. For temperatures greater than about 775 K there are no stable oxygen species, except for the possibility of O atoms adsorbed at under-coordinated surface sites Our calculations rule out thicker oxide-like structures, as well as bulk dissolved oxygen and molecular ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    BMD loci contribute to ethnic and developmental differences in skeletal fragility across populations: Assessment of evolutionary selection pressures

    Get PDF
    Bone mineral density (BMD) is a highly heritable trait used both for the diagnosis of osteoporosis in adults and to assess bone health in children. Ethnic differences in BMD have been documented, with markedly higher levels in individuals of African descent, which partially explain disparity in osteoporosis risk across populations. To date, 63 independent genetic variants have been associated with BMD in adults of Northern-European ancestry. Here, we demonstrate that at least 61 of these variants are predictive of BMD early in life by studying their compound effect within two multiethnic pediatric cohorts. Furthermore, we show that within these cohorts and across populations worldwide the frequency of those alleles associated with increased BMD is systematically elevated in individuals of Sub-Saharan African ancestry. The amount of differentiation in the BMD genetic scores among Sub-Saharan and non-Sub-Saharan populations together with neutrality tests, suggest that these allelic differences are compatible with the hypothesis of selective pressures acting on the genetic determinants of BMD. These findings constitute an explorative contribution to the role of selection on ethnic BMD differences and likely a new example of polygenic adaptation acting on a human trait

    Search for solar flare neutrinos with the KamLAND detector

    Get PDF
    We report the result of a search for neutrinos in coincidence with solar flares from the GOES flare database. The search was performed on a 10.8 kton-year exposure of KamLAND collected from 2002 to 2019. This large exposure allows us to explore previously unconstrained parameter space for solar flare neutrinos. We found no statistical excess of neutrinos and established 90% confidence level upper limits of 8.4 × 10^7 cm^−2 (3.0 × 10^9 cm^−2) on the electron antineutrino (electron neutrino) fluence at 20 MeV normalized to the X12 flare, assuming that the neutrino fluence is proportional to the X-ray intensity.https://arxiv.org/abs/2105.0245

    School-based prevention for adolescent Internet addiction: prevention is the key. A systematic literature review

    Get PDF
    Adolescents’ media use represents a normative need for information, communication, recreation and functionality, yet problematic Internet use has increased. Given the arguably alarming prevalence rates worldwide and the increasingly problematic use of gaming and social media, the need for an integration of prevention efforts appears to be timely. The aim of this systematic literature review is (i) to identify school-based prevention programmes or protocols for Internet Addiction targeting adolescents within the school context and to examine the programmes’ effectiveness, and (ii) to highlight strengths, limitations, and best practices to inform the design of new initiatives, by capitalizing on these studies’ recommendations. The findings of the reviewed studies to date presented mixed outcomes and are in need of further empirical evidence. The current review identified the following needs to be addressed in future designs to: (i) define the clinical status of Internet Addiction more precisely, (ii) use more current psychometrically robust assessment tools for the measurement of effectiveness (based on the most recent empirical developments), (iii) reconsider the main outcome of Internet time reduction as it appears to be problematic, (iv) build methodologically sound evidence-based prevention programmes, (v) focus on skill enhancement and the use of protective and harm-reducing factors, and (vi) include IA as one of the risk behaviours in multi-risk behaviour interventions. These appear to be crucial factors in addressing future research designs and the formulation of new prevention initiatives. Validated findings could then inform promising strategies for IA and gaming prevention in public policy and education
    corecore