475 research outputs found

    Remote identification of sheep with flystrike using behavioural observations

    Get PDF
    Flystrike is a major problem affecting sheep in Australia. Identification of ‘flystruck’ individuals is crucial for treatment; but requires labour-intensive physical examination. As the industry moves toward more low-input systems; there is a need for remote methods to identify flystruck individuals. The aim of this study was to investigate the behaviour of sheep with breech flystrike within a paddock setting. Video footage of sixteen Merino sheep; eight later confirmed with flystrike and eight without; was collected as they moved freely within the paddock with conspecifics. Quantitative behavioural measurements and a qualitative behavioural assessment (QBA) were conducted and compared to their breech conditions (i.e., faecal/urine staining; flystrike severity). Both qualitative and quantitative assessments indicated behavioural differences between flystruck and non-flystruck animals. Flystruck sheep had a behavioural profile characterised by restless behaviour; abnormal postures and reduced grazing time (<i>p</i> < 0.05). Furthermore; flystruck sheep were scored to have a more ‘exhausted/irritated’ demeanour using QBA (<i>p</i> < 0.05). The behavioural responses also corresponded to the flystrike severity scores and condition of the breech area. We conclude that remotely assessed behaviour of flystruck sheep diverges markedly from non-flystruck sheep; and thus could be a low-input method for identifying and treating affected animals

    Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    Get PDF
    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30-60 degree hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators

    Wide-angle electron beams from laser-wakefield accelerators

    Get PDF
    Advances in laser technology have driven the development of laser-wakefield accelerators, compact devices that are capable of accelerating electrons to GeV energies over centimetre distances by exploiting the strong electric field gradients arising from the interaction of intense laser pulses with an underdense plasma. A side-effect of this acceleration mechanism is the production of high-charge, low-energy electron beams at wide angles. Here we present an experimental and numerical study of the properties of these wide-angle electron beams, and show that they carry off a significant fraction of the energy transferred from the laser to the plasma. These high-charge, wide-angle beams can also cause damage to laser-wakefield accelerators based on capillaries, as well as become source of unwanted bremsstrahlung radiation

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    Ordering and finite-size effects in the dynamics of one-dimensional transient patterns

    Full text link
    We introduce and analyze a general one-dimensional model for the description of transient patterns which occur in the evolution between two spatially homogeneous states. This phenomenon occurs, for example, during the Freedericksz transition in nematic liquid crystals.The dynamics leads to the emergence of finite domains which are locally periodic and independent of each other. This picture is substantiated by a finite-size scaling law for the structure factor. The mechanism of evolution towards the final homogeneous state is by local roll destruction and associated reduction of local wavenumber. The scaling law breaks down for systems of size comparable to the size of the locally periodic domains. For systems of this size or smaller, an apparent nonlinear selection of a global wavelength holds, giving rise to long lived periodic configurations which do not occur for large systems. We also make explicit the unsuitability of a description of transient pattern dynamics in terms of a few Fourier mode amplitudes, even for small systems with a few linearly unstable modes.Comment: 18 pages (REVTEX) + 10 postscript figures appende

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure

    Soil Organic Carbon and Nitrogen Feedbacks on Crop Yields under Climate Change

    Get PDF
    Articles in A&EL are published under the CC-BY NC ND (non-commercial; no derivatives) license (https://creativecommons.org/licenses/by-nc-nd/2.0/). Users are free to copy and redistribute the material in any medium or format. Any further publication of the article will require proper attribution; no derivative works may be made from this article; and the article may not be used for any commercial gain (https://creativecommons.org/licenses/by-nc-nd/2.0/). The author is given explicit permission to publish the final article in her/his institutional repository. There is an option for the CC-BY license if required by an author's institution.Peer reviewedPublisher PD

    Towards good practice guidelines for the contour method of residual stress measurement

    Get PDF
    Accurate measurement of residual stress in metallic components using the contour method relies on the achievement of a good quality cut, on the appropriate measurement of the deformed cut surface and on the robust analysis of the measured data. There is currently no published standard or code of practice for the contour method. As a first step towards such a standard, this study draws on research investigations addressing the three main steps in the method: how best to cut the specimens; how to measure the deformation contour of the cut surface; and how to analyse the data. Good practice guidance is provided throughout the text accompanied by more detailed observations and advice tabulated in Appendi

    Quantitative importance of staminodes for female reproductive success in Parnassia palustris under contrasting environmental conditions.

    Get PDF
    The five sterile stamens, or staminodes, in Parnassia palustris act both as false and as true nectaries. They attract pollinators with their conspicuous, but non-rewarding tips, and also produce nectar at the base. We removed staminodes experimentally and compared pollinator visitation rate and duration and seed set in flowers with and without staminodes in two different populations. We also examined the relative importance of the staminode size to other plant traits. Finally, we bagged, emasculated, and supplementary cross-pollinated flowers to determine the pollination strategy and whether reproduction was limited by pollen availability. Flowers in both populations were highly dependent on pollinator visitation for maximum seed set. In one population pollinators primarily cross-pollinated flowers, whereas in the other the pollinators facilitated self-pollination. The staminodes caused increased pollinator visitation rate and duration to flowers in both populations. The staminodes increased female reproductive success, but only when pollen availability constrained female reproduction. Simple linear regression indicated a strong selection on staminode size, multiple regression suggested that selection on staminode size was mainly caused by correlation with other traits that affected female fitness. [ABSTRACT FROM AUTHOR
    corecore