4 research outputs found
Beyond a phenomenological description of magnetostriction
We use ultrafast x-ray and electron diffraction to disentangle spin-lattice
coupling of granular FePt in the time domain. The reduced dimensionality of
single-crystalline FePt nanoparticles leads to strong coupling of magnetic
order and a highly anisotropic three-dimensional lattice motion characterized
by a- and b-axis expansion and c-axis contraction. The resulting increase of
the FePt lattice tetragonality, the key quantity determining the energy barrier
between opposite FePt magnetization orientations, persists for tens of
picoseconds. These results suggest a novel approach to laser-assisted magnetic
switching in future data storage applications.Comment: 12 pages, 4 figure
Recommended from our members
Beyond a phenomenological description of magnetostriction
Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction-the underlying magnetoelastic stress-can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization