103 research outputs found

    Effectiveness of physiotherapy exercise following hip arthroplasty for osteoarthritis: a systematic review of clinical trials

    Get PDF
    Background: Physiotherapy has long been a routine component of patient rehabilitation following hip joint replacement. The purpose of this systematic review was to evaluate the effectiveness of physiotherapy exercise after discharge from hospital on function, walking, range of motion, quality of life and muscle strength, for osteoarthritic patients following elective primary total hip arthroplasty. Methods: Design: Systematic review, using the Cochrane Collaboration Handbook for Systematic Reviews of Interventions and the Quorom Statement. Database searches: AMED, CINAHL, EMBASE, KingsFund, MEDLINE, Cochrane library (Cochrane reviews, Cochrane Central Register of Controlled Trials, DARE), PEDro, The Department of Health National Research Register. Handsearches: Physiotherapy, Physical Therapy, Journal of Bone and Joint Surgery (Britain) Conference Proceedings. No language restrictions were applied. Selection: Trials comparing physiotherapy exercise versus usual/standard care, or comparing two types of relevant exercise physiotherapy, following discharge from hospital after elective primary total hip replacement for osteoarthritis were reviewed. Outcomes: Functional activities of daily living, walking, quality of life, muscle strength and range of hip joint motion. Trial quality was extensively evaluated. Narrative synthesis plus meta-analytic summaries were performed to summarise the data. Results: 8 trials were identified. Trial quality was mixed. Generally poor trial quality, quantity and diversity prevented explanatory meta-analyses. The results were synthesised and meta-analytic summaries were used where possible to provide a formal summary of results. Results indicate that physiotherapy exercise after discharge following total hip replacement has the potential to benefit patients. Conclusion: Insufficient evidence exists to establish the effectiveness of physiotherapy exercise following primary hip replacement for osteoarthritis. Further well designed trials are required to determine the value of post discharge exercise following this increasingly common surgical procedure

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    Get PDF
    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only

    Differential Requirement for Utrophin in the Induced Pluripotent Stem Cell Correction of Muscle versus Fat in Muscular Dystrophy Mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is an incurable degenerative muscle disorder. We injected WT mouse induced pluripotent stem cells (iPSCs) into mdx and mdx∶utrophin mutant blastocysts, which are predisposed to develop DMD with an increasing degree of severity (mdx <<< mdx∶utrophin). In mdx chimeras, iPSC-dystrophin was supplied to the muscle sarcolemma to effect corrections at morphological and functional levels. Dystrobrevin was observed in dystrophin-positive and, at a lesser extent, utrophin-positive areas. In the mdx∶utrophin mutant chimeras, although iPSC-dystrophin was also supplied to the muscle sarcolemma, mice still displayed poor skeletal muscle histopathology, and negligible levels of dystrobrevin in dystrophin- and utrophin-negative areas. Not only dystrophin-expressing tissues are affected by iPSCs. Mdx and mdx∶utrophin mice have reduced fat/body weight ratio, but iPSC injection normalized this parameter in both mdx and mdx∶utrophin chimeras, despite the fact that utrophin was compromised in the mdx∶utrophin chimeric fat. The results suggest that the presence of utrophin is required for the iPSC-corrections in skeletal muscle. Furthermore, the results highlight a potential (utrophin-independent) non-cell autonomous role for iPSC-dystrophin in the corrections of non-muscle tissue like fat, which is intimately related to the muscle

    Heightened Vulnerability to MDR-TB Epidemics after Controlling Drug-Susceptible TB

    Get PDF
    Prior infection with one strain TB has been linked with diminished likelihood of re-infection by a new strain. This paper attempts to determine the role of declining prevalence of drug-susceptible TB in enabling future epidemics of MDR-TB.A computer simulation of MDR-TB epidemics was developed using an agent-based model platform programmed in NetLogo (See http://mdr.tbtools.org/). Eighty-one scenarios were created, varying levels of treatment quality, diagnostic accuracy, microbial fitness cost, and the degree of immunogenicity elicited by drug-susceptible TB. Outcome measures were the number of independent MDR-TB cases per trial and the proportion of trials resulting in MDR-TB epidemics for a 500 year period after drug therapy for TB is introduced.MDR-TB epidemics propagated more extensively after TB prevalence had fallen. At a case detection rate of 75%, improving therapeutic compliance from 50% to 75% can reduce the probability of an epidemic from 45% to 15%. Paradoxically, improving the case-detection rate from 50% to 75% when compliance with DOT is constant at 75% increases the probability of MDR-TB epidemics from 3% to 45%.The ability of MDR-TB to spread depends on the prevalence of drug-susceptible TB. Immunologic protection conferred by exposure to drug-susceptible TB can be a crucial factor that prevents MDR-TB epidemics when TB treatment is poor. Any single population that successfully reduces its burden of drug-susceptible TB will have reduced herd immunity to externally or internally introduced strains of MDR-TB and can experience heightened vulnerability to an epidemic. Since countries with good TB control may be more vulnerable, their self interest dictates greater promotion of case detection and DOTS implementation in countries with poor control to control their risk of MDR-TB

    The Efficacy of Pharmacotherapy for Decreasing the Expansion Rate of Abdominal Aortic Aneurysms: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Pharmacotherapy may represent a potential means to limit the expansion rate of abdominal aortic aneurysms (AAAs). Studies evaluating the efficacy of different pharmacological agents to slow down human AAA-expansion rates have been performed, but they have never been systematically reviewed or summarized. METHODS AND FINDINGS: Two independent reviewers identified studies and selected randomized trials and prospective cohort studies comparing the growth rate of AAA in patients with pharmacotherapy vs. no pharmacotherapy. We extracted information on study interventions, baseline characteristics, methodological quality, and AAA growth rate differences (in mm/year). Fourteen prospective studies met eligibility criteria. Five cohort studies raised the possibility of benefit of beta-blockers [pooled growth rate difference: -0.62 mm/year, (95%CI, -1.00 to -0.24)], but this was not confirmed in three beta-blocker RCTs [pooled RCT growth rate difference: -0.05 mm/year (-0.16 to 0.05)]. Statins have been evaluated in two cohort studies that yield a pooled growth rate difference of -2.97 (-5.83 to -0.11). Doxycycline and roxithromycin have been evaluated in two RCTs that suggest possible benefit [pooled RCT growth rate difference: -1.32 mm/year (-2.89 to 0.25)]. Studies assessing NSAIDs, diuretics, calcium channel blockers and ACE inhibitors, meanwhile, did not find statistically significant differences. CONCLUSIONS: Beta-blockers do not appear to significantly reduce the growth rate of AAAs. Statins and other anti-inflammatory agents appear to hold promise for decreasing the expansion rate of AAA, but need further evaluation before definitive recommendations can be made

    Neuronal Nitric Oxide Synthase-Rescue of Dystrophin/Utrophin Double Knockout Mice does not Require nNOS Localization to the Cell Membrane

    Get PDF
    Survival of dystrophin/utrophin double-knockout (dko) mice was increased by muscle-specific expression of a neuronal nitric oxide synthase (nNOS) transgene. Dko mice expressing the transgene (nNOS TG+/dko) experienced delayed onset of mortality and increased life-span. The nNOS TG+/dko mice demonstrated a significant decrease in the concentration of CD163+, M2c macrophages that can express arginase and promote fibrosis. The decrease in M2c macrophages was associated with a significant reduction in fibrosis of heart, diaphragm and hindlimb muscles of nNOS TG+/dko mice. The nNOS transgene had no effect on the concentration of cytolytic, CD68+, M1 macrophages. Accordingly, we did not observe any change in the extent of muscle fiber lysis in the nNOS TG+/dko mice. These findings show that nNOS/NO (nitric oxide)-mediated decreases in M2c macrophages lead to a reduction in the muscle fibrosis that is associated with increased mortality in mice lacking dystrophin and utrophin. Interestingly, the dramatic and beneficial effects of the nNOS transgene were not attributable to localization of nNOS protein at the cell membrane. We did not detect any nNOS protein at the sarcolemma in nNOS TG+/dko muscles. This important observation shows that sarcolemmal localization is not necessary for nNOS to have beneficial effects in dystrophic tissue and the presence of nNOS in the cytosol of dystrophic muscle fibers can ameliorate the pathology and most importantly, significantly increase life-span

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods
    corecore