227 research outputs found

    Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array

    Get PDF
    We propose an approach for enhancing the absorption of thin-film amorphous silicon solar cells using periodic arrangements of resonant dielectric nanospheres deposited as a continuous film on top of a thin planar cell. We numerically demonstrate this enhancement using 3D full field finite difference time domain simulations and 3D finite element device physics simulations of a nanosphere array above a thin-film amorphous silicon solar cell structure featuring back reflector and anti-reflection coating. In addition, we use the full field finite difference time domain results as input to finite element device physics simulations to demonstrate that the enhanced absorption contributes to the current extracted from the device. We study the influence of a multi-sized array of spheres, compare spheres and domes and propose an analytical model based on the temporal coupled mode theory

    Application of the proper generalized decomposition method to a viscoelastic mechanical problem with a large number of internal variables and a large spectrum of relaxation times

    Get PDF
    We here extend the use of the PGD to the case of a viscoelastic mechanical problem with a large number of internal variables and with a large spectrum of relaxation times. Such a number of internal variables leads to solving a system of non linear differential equations which correspond to the return to the equilibrium state. The feasibility and the robustness of the method are discussed in a simple case; a future application is the simulation of a polymer reaction under cyclic loading

    Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides

    Get PDF
    The realization of practical on-chip plasmonic devices will require efficient coupling of light into and out of surface plasmon waveguides over short length scales. In this letter, we report on low insertion loss for polymer-on-gold dielectric-loaded plasmonic waveguides end-coupled to silicon-on-insulator waveguides with a coupling efficiency of 79 ± 2% per transition at telecommunication wavelengths. Propagation loss is determined independently of insertion loss by measuring the transmission through plasmonic waveguides of varying length, and we find a characteristic surface-plasmon propagation length of 51 ± 4 μm at a free-space wavelength of λ = 1550 nm. We also demonstrate efficient coupling to whispering-gallery modes in plasmonic ring resonators with an average bending-loss-limited quality factor of 180 ± 8

    Mechanical Effects in PEM Fuel Cell: Application to Modeling of Assembly Procedure

    Get PDF
    Mechanical effects can influence significantly electrical performance and life time of PEM fuel cells. A linear elasticplastic 2D model of fuel cell with hardening is used for modeling of assembly procedure of fuel cells. The model simulates mechanical behavior of the main components of real fuel cell (the membrane, the gas diffusion layers, the graphite plates, and the seal joints) and clamping elements (the steel plates, the bolts, the nuts). The stress and plastic deformation in MEA have been calculated using ABAQUS code. The results are presented on the local and the global scales with respect to the realistic clamping conditions. The first one corresponds to the single tooth/channel structure. The global scale deals with features of the entire cell and takes into account the border effects, in particular the influence of seal joints

    Electron transport via local polarons at interface atoms

    Get PDF
    Electronic transport is profoundly modified in the presence of strong electron-vibration coupling. We show that in certain situations, the electron flow takes place only when vibrations are excited. By controlling the segregation of boron in semiconducting Si(111)-3√×3√R30° surfaces, we create a type of adatom with a dangling-bond state that is electronically decoupled from any other electronic state. However, probing this state with scanning tunnelling microscopy at 5 K yields high currents. These findings are rationalized by ab-initio calculations that show the formation of a local polaron in the transport process
    corecore