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Abstract. We here extend the use of the PGD to the case of a viscoelastic mechanical 
problem with a large number of internal variables and with a large spectrum of relaxation 
times. Such a number of internal variables leads to solving a system of non linear differential 
equations which correspond to the return to the equilibrium state.  The feasibility and the 
robustness of the method are discussed in a simple case; a future application is the simulation 
of a polymer reaction under cyclic loading.  

1 INTRODUCTION 

To solve a problem with a large number of degrees of freedom (dofs), numerical 
techniques, as parallel computing and domain decomposition, can be used. In the case of a 
multiphysical problem or of a problem with a large number of internal variables, it leads to 
solving a large number of differential equations. 

The PGD method, based on the radial approximation [4], has proved to be efficient for 
solving problems with a large number of dofs [2, 3], and particularly in the case of a coupled 
thermo mechanical problem [1]. 

We here extend the use of the PGD [1] to the case of a viscoelastic mechanical problem 
with a large number of internal variables and with a large spectrum of relaxation times (50 to 
100 times [5]). Such a number of internal variables leads to solving a system of non linear 
differential equations which correspond to the return to the equilibrium state. The feasibility 
and the robustness of the method are discussed in a simple case; a future application is the 
simulation of a polymer reaction under cyclic loading.  

Section 2 introduces the equations of the viscoelastic mechanical problem. In section 3, the 
PGD is used to solve the problem with internal variables. While in section 4, we present the 
numerical results of a problem with one internal variable but with different relaxation times.  
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2 RESOLUTION OF VISCOELASTIC PROBLEM WITH INTERNAL VARIABLES 

2.1 Equations of problem 

Let us consider a one-dimensional problem in space (noted x). The generic form of the 
mechanical problem with internal variables is written as: 
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Where ∞
jz represents the relaxed status of the internal variable jz ; jτ is the relaxation time; 

∞
rjE is the relaxed Young’s modulus and vE is the vitreous Young’s modulus of the material. 

The vitreous Young’s modulus depends on the ∞E modulus and the relaxed one rE and its 

form is: ∑ ∞
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Problems (1)-(2) are assumed to be defined on the domain: tx Ω×Ω=Ω , where [ ]xL,0=Ω x
and [ ]tL,0=Ω t . The initial conditions are equal to zero and the boundary conditions are 

written as: foFnσ ∂=⋅ n and uo0u ∂= n . 

Remark: The subscript j concerns the internal variables, and it variates from 1 to m, where m 
is the number of internal variables. If we consider a problem with m internal variables, it 
means that the equation (2) is reported m times. The specificity of each equation is related to 
the relaxation time of this internal variable. The displacement field and the internal variable 
are then coupled.  

2.2 Use of the PGD to solve the viscoelastic problem 

The aim of the separated representation method is to compute N couples of functions 
( ) ( ) }{ N1,.....,i,D,C,B,A iiii =  such that }{ N1,.....,i,C,A ii = and }{ N1,.....,i,D,B ii =  are defined 

respectively in xΩ and tΩ , and the solutions u and z of the coupled problem can be written in 
the following separated form:  
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Once N separated variables functions are computed, the next separated variables functions to 
be computed are called )(xR , )(tS , )(xVj and )(tWj in this step. They are solutions of the 

Galerkin variational formulation related to equations (1) and (2): 
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With the trial and test fields written as follows: 
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2.3 Specificities related to the internal variables

The displacement field and the internal variables are completely integral. We choose to 
solve equation (6) and then equation (7) at each step of enrichment in order to decouple the 
problem. The process is initialized with the solution of an elastic problem without internal 
variable. Once the displacement field is computed (6), the solution is introduced in equation 
(4) in order to compute the internal variable in equation (2). This internal variable is placed in 
equation (3) to compute the solution of the viscoelastic problem.  This process is iterated until 
convergence.  

In a step of enrichment, the method of fixed point is used to compute the functions )(xR , 

)(tS and then )(xVj and )(tWj . In what follows, the equations to compute these functions are: 
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For )(tS : 
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For )(xVj : 
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After each iteration l, two residuals are computed; uR related to equation (1) and
jZ

R related 

to equation (2).  
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Where stands for the 2L norms. The iterative procedure is stopped when ( )
jzu RR ,max is 

small enough. The solution of the problem is then given by equation (5).  

3 APPLICATION TO A PROBLEM WITH ONE INTERNAL VARIABLE 

The simulation test is a 10 mm long one-dimensional bar subjected to a load  
)()10(),( tHxGtxF ×== at x = 10 mm as shown in figure 1 and with null boundary conditions 

at x = 0 mm. The time tL equals 10 s. The parameters of material are given in the table 1. The 
time step equals 0,1 sec, and the space one equals 0,25 mm. We here consider a problem with 
one internal variable with different relaxation times and study its influence on the 
displacement field.     
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Figure 1: Creep load at the extremity of the bar 

Table 1: Mechanical parameters of the material 

vE (MPa) ∞E (MPa)

1140 140 

3.1 Results and Discussion 

For τ equals 1 second, the solution is reached with 10 iterations with ( )ii BA × = (0.01 – 0.07 

– 0.009 – 0.0025 – 0.0001 – 0.002 – 0.001 – 0.0004 – 0.0001 – 0.00003) for the displacement 
field; and ( )ii DC × = (10.41 – 7.53 – 0.85 – 0.19 – 0.03 – 0.21 – 0.09 – 0.03 – 0.009 – 0.002) 

for the internal variable.  

a) 
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b) 

Figure 2: (a) Displacement field and (b) Spatial and Temporal modes. 

Figure 2a shows the displacement field computed. Temporal and spatial modes for the 
displacement field are represented in Figure 2b. Figure 3 shows the convergence of the 
solution via the residuals (equations (14) and (15)) compared to the iteration number.  

Figure 3: Convergence of the PGD 
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a) 

b) 

Figure 4: (a) Influence of relaxation time on the displacement field, (b) and comparison with elastic solution 

The same simulation is done with different value of relaxation time. Based on the value ofτ , 
the solution was not reached with the same number of modes which increases when τ
decreases. Figure 4a shows the influence of the relaxation time on the displacement field.  
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We can observe that the influence of the internal variable is important when the value of the 
relaxation time is weak. Figure 4b shows that when the relaxation time is high, the reached 
solution is that of the elastic problem. In that case, fewer modes are needed to represent the 
solution. In table 2, we show the number of iterations with respect to the variation of the 
relaxation timeτ . 

Table 2: Influence τ of on the number of modes 

τ (s) 0.1 1 10 100 1000 
iteration 15 10 9 5 4 

4 CONCLUSION 

In this work, the PGD was validated in the case of a viscoelastic problem with one internal 
variable. The solution was computed with different relaxation time, and we observed that the 
number of modes needed to describe the displacement field depends on the relaxation time.  

These results are encouraging and will be extended to the case with many internal variables 
and relaxation time in order to simulate the behavior of the PE-HD polymer under cyclic 
loading. It will be our future application.  
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