24 research outputs found

    Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress

    Get PDF
    Aims Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. Methods and results Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. Conclusions The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled heart

    Heterogeneity in the processing of ClC-5 mutants related to Dent disease

    Get PDF
    International audienceMutations in the electrogenic Cl-/H+ exchanger ClC-5 gene CLCN5 are frequently associated with Dent disease, an X-linked recessive disorder affecting the proximal tubules. Here, we investigate the consequences in X. laevis oocytes and in HEK293 cells of 9 previously reported, pathogenic, missense mutations of ClC-5, most of them which are located in regions forming the subunit interface. Two mutants trafficked normally to the cell surface and to early endosomes, and displayed complex glycosylation at the cell surface like wild-type ClC 5, but exhibited reduced currents. Three mutants displayed improper N-glycosylation, and were non-functional due to being retained and degraded at the endoplasmic reticulum. Functional characterization of four mutants allowed us to identify a novel mechanism leading to ClC-5 dysfunction in Dent disease. We report that these mutant proteins were delayed in their processing and that the stability of their complex glycosylated form was reduced, causing lower cell surface expression. The early endosome distribution of these mutants was normal. Half of these mutants displayed reduced currents, whereas the other half showed abolished currents. Our study revealed distinct cellular mechanisms accounting for ClC-5 loss-of-function in Dent disease

    Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly

    Get PDF
    De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancementRamon y Cajal program RYC2014-15784, RETOS-MINECO SAF2016-76565-R, ERANET-Neuron JTC 2019 ISCIII AC19/00077 FEDER funds (to R.A.); RETOS-MINECO SAF2017-87928-R (to A.B.); an NIH grant (NS76637) and UTHSC College of Medicine funds (to S.J.T.); and NARSAD Independent Investigator Award and grants from the MINECO (CSD2008-00005, SAF2013-48983R, SAF2016-80895-R), Generalitat Valenciana (PROMETEO 2019/020)(to I.P.O.) and Severo-Ochoa Excellence Awards (SEV-2013-0317, SEV-2017-0723)Peer reviewe

    Control of protein synthesis and memory by GluN3A-NMDA receptors through inhibition of GIT1/mTORC1 assembly

    Get PDF
    De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement

    Analyse fonctionnelle de mutations du gène CLN5 impliquées dans la maladie de Dent

    No full text
    La maladie de Dent est une maladie rénale héréditaire liée au chromosome X. Elle apparait dès l enfance ou à l âge adulte et se traduit par une protéinurie de bas poids moléculaire accompagnée le plus souvent d une hypercalciurie, d une hyperphosphaturie et d une néphrocalcinose. Cette atteinte du tubule contourné proximal conduit régulièrement à une insuffisance rénale terminale, elle est due à la mutation du gène CLCN5 codant le transporteur ClC-5. L ensemble du travail a permis de classer les mutants ClC-5 en trois types. Les ClC-5 mutants de type 1 (16% des mutations) présentent une maturation N-glycosidique et une localisation subcellulaire normale mais une conduction altérée voire abolie. Les mutants de type 2, les plus courants (75% des mutations), démontrent une altération de leur maturation N-glycosidique, ainsi qu une absence d adressage à la membrane plasmique et aux endosomes précoces en raison de leur rétention dans le réticulum endoplasmique par les systèmes contrôle-qualité. Enfin, les mutants de type 3 voient la stabilité de leur forme mature diminuer par rapport à la protéine sauvage, provoquant ainsi une réduction de leur expression à la membrane plasmique. En revanche, leur adressage aux endosomes précoces n est pas altéré. En conclusion, ce travail de thèse aura permis de mieux comprendre l impact fonctionnel de mutations dans le gène CLCN5 en vue d une éventuelle intervention pharmacologique adaptée en fonction du type de défaut observé. Il aura aussi permis d identifier des zones clés de la protéine pour la conduction ionique et servira de point de départ à d autres études plus poussées sur les conductances de H+ et de Cl- des mutants de type 1.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of α-smooth muscle actin containing stress fibers

    Get PDF
    Rationale: Myofibroblasts typically appear in the myocardium after insults to the heart like mechanical overload and infarction. Apart from contributing to fibrotic remodeling, myofibroblasts induce arrhythmogenic slow conduction and ectopic activity in cardiomyocytes after establishment of heterocellular electrotonic coupling in vitro. So far, it is not known whether α-smooth muscle actin (α-SMA) containing stress fibers, the cytoskeletal components that set myofibroblasts apart from resident fibroblasts, are essential for myofibroblasts to develop arrhythmogenic interactions with cardiomyocytes. Objective: We investigated whether pharmacological ablation of α-SMA containing stress fibers by actin-targeting drugs affects arrhythmogenic myofibroblast–cardiomyocyte cross-talk. Methods and Results: Experiments were performed with patterned growth cell cultures of neonatal rat ventricular cardiomyocytes coated with cardiac myofibroblasts. The preparations exhibited slow conduction and ectopic activity under control conditions. Exposure to actin-targeting drugs (Cytochalasin D, Latrunculin B, Jasplakinolide) for 24 hours led to disruption of α-SMA containing stress fibers. In parallel, conduction velocities increased dose-dependently to values indistinguishable from cardiomyocyte-only preparations and ectopic activity measured continuously over 24 hours was completely suppressed. Mechanistically, antiarrhythmic effects were due to myofibroblast hyperpolarization (Cytochalasin D, Latrunculin B) and disruption of heterocellular gap junctional coupling (Jasplakinolide), which caused normalization of membrane polarization of adjacent cardiomyocytes. Conclusions: The results suggest that α-SMA containing stress fibers importantly contribute to myofibroblast arrhythmogeneicity. After ablation of this cytoskeletal component, cells lose their arrhythmic effects on cardiomyocytes, even if heterocellular electrotonic coupling is sustained. The findings identify α-SMA containing stress fibers as a potential future target of antiarrhythmic therapy in hearts undergoing structural remodeling

    Aggravation of cardiac myofibroblast arrhythmogeneicity by mechanical stress

    Get PDF
    Aims Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. Methods and results Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. Conclusions The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled hearts

    Higher ambient synaptic glutamate at inhibitory versus excitatory neurons differentially impacts NMDA receptor activity

    No full text
    Inhibitory interneurons play important roles in brain circuits and in several neuropsychiatric disorders. Here, the authors show that excitatory synapses onto interneurons vs. excitatory neurons differ in their ambient synaptic glutamate level, a finding with important implications for selective pharmacological targeting of inhibitory neuron NMDA receptors
    corecore