108 research outputs found

    Tropospheric Ozone Assessment Report: present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

    Get PDF
    The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60°N–60°S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest.Peer ReviewedPostprint (published version

    Validation of the TOLNet lidars: The Southern California Ozone Observation Project (SCOOP)

    Get PDF
    The North America-based Tropospheric Ozone Lidar Network (TOLNet) was recently established to provide high spatiotemporal vertical profiles of ozone, to better understand physical processes driving tropospheric ozone variability and to validate the tropospheric ozone measurements of upcoming spaceborne missions such as Tropospheric Emissions: Monitoring Pollution (TEMPO). The network currently comprises six tropospheric ozone lidars, four of which are mobile instruments deploying to the field a few times per year, based on campaign and science needs. In August 2016, all four mobile TOLNet lidars were brought to the fixed TOLNet site of JPL Table Mountain Facility for the 1-week-long Southern California Ozone Observation Project (SCOOP). This intercomparison campaign, which included 400¿h of lidar measurements and 18 ozonesonde launches, allowed for the unprecedented simultaneous validation of five of the six TOLNet lidars. For measurements between 3 and 10¿km¿a.s.l., a mean difference of 0.7¿ppbv (1.7¿%), with a root-mean-square deviation of 1.6¿ppbv or 2.4¿%, was found between the lidars and ozonesondes, which is well within the combined uncertainties of the two measurement techniques. The few minor differences identified were typically associated with the known limitations of the lidars at the profile altitude extremes (i.e., first 1¿km above ground and at the instruments' highest retrievable altitude). As part of a large homogenization and quality control effort within the network, many aspects of the TOLNet in-house data processing algorithms were also standardized and validated. This thorough validation of both the measurements and retrievals builds confidence as to the high quality and reliability of the TOLNet ozone lidar profiles for many years to come, making TOLNet a valuable ground-based reference network for tropospheric ozone profiling.Peer ReviewedPostprint (published version

    Desarrollo de un sistema de toma de decisiones autónomo y ejemplo de aplicación a servicios de seguridad bajo demanda

    Get PDF
    Existen multitud de sistemas de adquisición de datos autónomos basados en diferentes metodologías, muchos de ellos se imparten en la educación universitaria y otros por el contrario surgen de un exhaustivo trabajo de investigación científica. Estos sistemas se aplican hoy en día en un gran número de áreas, siendo todas ellas muy diversas aunque con importantes nexos comunes. En el presente artículo se propone, a partir de un proyecto fin de carrera, un sistema autónomo de adquisición de datos y reconocimiento del entorno, con un alto índice de escalabilidad e integración a nuevos espacios. Para probar su eficacia se propone también una aplicación robotizada que utiliza estas características en el área de la seguridad, un campo en el que resultan especialmente claras las propiedades diferenciadoras del método propuesto

    Feasibility of Ceilometers Data to Estimate Radiative Forcing Values: Application to Different Conditions around the COVID-19 Lockdown Period

    Get PDF
    The authors would like to acknowledge to ACTRIS-SPAIN (CGL2017-90884-REDIT), coordinated by Granada University, for providing quality-assured aerosol measurements and acknowledge to AERONET and COPERNICUS Global Land Services for sun-photometer and satellite quality-assured data processing and distribution. The authors also acknowledge to the Atmospheric Modelling & Weather Forecasting Group in the University of Athens, the Earth Science Dpt. from the Barcelona Supercomputing Centre and the Naval Research laboratory for the provision of SKIRON, DREAM/BSCDREAM8b and NAAPs aerosol maps, respectively. Philippe Dubuisson, the developer of the GAME code, is specially acknowledged. Furthermore, the developers of the HYSPLIT model are also acknowledged. The task of identifying African dust events and quantifying the dust contribution in the regions of the Spanish territory has been routinely carried out in the framework of projects funded by the Spanish ministry for the Ecological Transition (MITECO).In this study, the feasibility of using ceilometer signals to retrieve radiative forcing values is evaluated. The Global Atmospheric Model (GAME) radiative transfer model is used to estimate the shortwave and longwave radiative forcing using an aerosol parameterization based on AERONET data and vertical profiles from a Lufft CHM-15k Nimbus ceilometer. First, eight cases confirmed as dusty days are analyzed to check the feasibility of using ceilometer profiles to feed GAME. The obtained radiative forcing estimates are in good agreement with the literature showing negative values in the short wave (SW) (cooling effect) and positive values in the long wave (LW) (heating effect), both at all levels. As in the literature, radiative forcing estimates show a strong dependence on variations in the aerosol optical depth (AOD), solar zenith angle (θz), surface temperature (ST), and single scattering albedo at 440 nm (SSA440). Thus, GAME can be fed using ceilometer measurements obtaining reliable results. Then, as the temporal evolution of the AOD440 between 27 January and 15 June compared to the 6-year weekly AERONET AOD440 average (from 2014 to 2019) shows a decrease because of the lockdown imposed in Spain due to the COVID-19, a total of 37 radiative forcing calculations without African dust, divided into 8 scenarios, are performed in order to check the effect of the lockdown measures in the radiative forcing. It is shown that the decrease in the AOD, during the lockdown, caused a decrease in the cooling effect in the SW spectral range at all levels. Besides, the increase in the ST increased the heating effect of the aerosols in the LW at the top of the atmosphere and the presence of pollution and absorbing particles (SSA440 < 0.90) caused an increase of the heating effect in the LW at the surface. Therefore, the observed variations in the radiative forcing estimates before and during the lockdown are directly related with the decrease in emissions of aerosols related to human activities.Spanish Ministry of Economy and Competitivity (CRISOL) CGL2017-85344-RMadrid Regional Government (TIGAS-CM) Y2018/EMT-5177Maria Sklodowska-Curie IF 796539H2020 programme from the European Union 654109; 87111

    ZigBee Pulse Oximeter

    Get PDF
    This work presents a prototype to adapt a standard pulse oximeter by turning it into a wireless device using ZigBee. Patient’s data are extracted and transmitted to the server in real time through a Wireless Sensor Network. This Wireless Sensor Network is deployed using the mesh topology in order to reach the maximum reliability in the communications. The pulse oximeter is based on a Nellcor DS-100a probe and is controlled by an Arduino FIO with a XBee wireless modem. The amplifier circuit which is designed to extract the information of the pulse oximeter probe is included in this work

    Considerations about the determination of the depolarization calibration profile of a two-telescope lidar and its implications for volume depolarization ratio retrieval

    Get PDF
    We propose a new method for calculating the volume depolarization ratio of light backscattered by the atmosphere and a lidar system that employs an auxiliary telescope to detect the depolarized component. It takes into account the possible error in the positioning of the polarizer used in the auxiliary telescope. The theory of operation is presented and then applied to a few cases for which the actual position of the polarizer is estimated, and the improvement of the volume depolarization ratio in the molecular region is quantified. In comparison to the method used before, i.e., without correction, the agreement between the volume depolarization ratio with correction and the theoretical value in the molecular region is improved by a factor of 2–2.5.Peer ReviewedPostprint (published version

    Aerosol properties over the western Mediterranean basin: temporal and spatial variability

    Get PDF
    This study focuses on the analysis of Aerosol Robotic Network (AERONET) aerosol data obtained over Alborán Island (35.90° N, 3.03° W, 15 m a.s.l.) in the western Mediterranean from July 2011 to January 2012. Additional aerosol data from the three nearest AERONET stations (Málaga, Oujda and Palma de Mallorca) and the Maritime Aerosol Network (MAN) were also analyzed in order to investigate the temporal and spatial variations of aerosol over this scarcely explored region. High aerosol loads over Alborán were mainly associated with desert dust transport from North Africa and occasional advection of anthropogenic fine particles from central European urban-industrial areas. The fine particle load observed over Alborán was surprisingly similar to that obtained over the other three nearest AERONET stations, suggesting homogeneous spatial distribution of fine particle loads over the four studied sites in spite of the large differences in local sources. The results from MAN acquired over the Mediterranean Sea, Black Sea and Atlantic Ocean from July to November 2011 revealed a pronounced predominance of fine particles during the cruise period.This work was supported by the Andalusia Regional Government through projects P12-RNM-2409 and P10-RNM-6299, by the Spanish Ministry of Science and Technology through projects CGL2010-18782, and CGL2013-45410-R; and by the EU through ACTRIS project (EU INFRA-2010-1.1.16-262254). CIMEL Calibration was performed at the AERONET-EUROPE calibration center, supported by ACTRIS (European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no. 262254

    Elimination of pesticide atrazine by photoelectrocatalysis using a photoanode based on WO3 nanosheets

    Get PDF
    [EN] The photoelectrocatalytic (PEC) degradation of a persistent and toxic herbicide, atrazine, has been investigated by using a novel and high-performance WO3 nanostructure in the form of nanosheets/nanorods as photoanode. The nanostructure has been synthesized by anodization in acidic media in the presence of a very small amount (0.05 M) of H2O2, and its morphology, as well as its electrochemical and photoelectrochemical properties have been characterized. Atrazine was completely degraded after similar to 180 min of reaction following pseudo-first order kinetics, and 2-hydroxyatrazine was identified as the main intermediate species. Moreover, the s-triazine ring in cyanuric acid (the final intermediate of atrazine degradation and very stable) was partially broken according to the obtained results, indicating the excellent PEC behavior of this WO3 nanostructure.Authors thank for the financial support to the Ministerio de Economia y Competitividad (Project Code: CTQ2016-79203-R) and for the co-finance by the European Social Fund and to Dr. Carlos Carbonell Alcaina for the use of the HPLC and for providing technical support.Fernández Domene, RM.; Sánchez Tovar, R.; Lucas-Granados, B.; Muñoz-Portero, M.; Garcia-Anton, J. (2018). Elimination of pesticide atrazine by photoelectrocatalysis using a photoanode based on WO3 nanosheets. Chemical Engineering Journal. 350:1114-1124. https://doi.org/10.1016/j.cej.2018.06.015S1114112435

    Two-dimensional mineral dust radiative effect calculations from CALIPSO observations over Europe

    Get PDF
    A demonstration study to examine the feasibility of retrieving dust radiative effects based on combined satellite data from MODIS (Moderate Resolution Imaging Spectroradiometer), CERES (Clouds and the Earth's Radiant Energy System) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar vertical profiles along their orbit is presented. The GAME (Global Atmospheric Model) radiative transfer model is used to estimate the shortwave and longwave dust radiative effects below the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) orbit assuming an aerosol parameterization based on the CALIOP vertical distribution at a horizontal resolution of 5¿km and additional AERONET (Aerosol Robotic Network) data. Two study cases are analyzed: a strong long-range transport mineral dust event (aerosol optical depth, AOD, of 0.52) that originated in the Sahara Desert and reached the United Kingdom and a weaker event (AOD¿=¿0.16) that affected eastern Europe. The radiative fluxes obtained are first validated in terms of radiative efficiency at a single point with space–time colocated lidar ground-based measurements from EARLINET (European Aerosol Research Lidar Network) stations below the orbit. The methodology is then applied to the full orbit. The strong dependence of the radiative effects on the aerosol load (and to a lesser extent on the surface albedo) highlights the need for accurate AOD measurements for radiative studies. The calculated dust radiative effects and heating rates below the orbits are in good agreement with previous studies of mineral dust, with the radiative efficiency obtained at the surface ranging between -80.3 and -63.0¿W¿m-2 for lower dust concentration event and -119.1 and -79.3¿W¿m-2 for the strong event. Thus, results demonstrate the validity of the method presented here to retrieve 2-D accurate radiative properties with large spatial and temporal coverage.Peer ReviewedPostprint (published version

    Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne

    Get PDF
    This study focuses on the analysis of aerosol hygroscopicity using remote sensing techniques. Continuous observations of aerosol backscatter coefficient (ßaer), temperature (T) and water vapor mixing ratio (r) have been performed by means of a Raman lidar system at the aerological station of MeteoSwiss at Payerne (Switzerland) since 2008. These measurements allow us to monitor in a continuous way any change in aerosol properties as a function of the relative humidity (RH). These changes can be observed either in time at a constant altitude or in altitude at a constant time. The accuracy and precision of RH measurements from the lidar have been evaluated using the radiosonde (RS) technique as a reference. A total of 172 RS profiles were used in this intercomparison, which revealed a bias smaller than 4¿%¿RH and a standard deviation smaller than 10¿%¿RH between both techniques in the whole (in lower) troposphere at nighttime (at daytime), indicating the good performance of the lidar for characterizing RH. A methodology to identify situations favorable to studying aerosol hygroscopicity has been established, and the aerosol hygroscopicity has been characterized by means of the backscatter enhancement factor (fß). Two case studies, corresponding to different types of aerosol, are used to illustrate the potential of this methodology. The first case corresponds to a mixture of rural aerosol and smoke particles (smoke mixture), which showed a higher hygroscopicity (f355ß=2.8 and f1064ß=1.8 in the RH range 73¿%–97¿%) than the second case, in which mineral dust was present (f355ß=1.2 and f1064ß=1.1in the RH range 68¿%–84¿%). The higher sensitivity of the shortest wavelength to hygroscopic growth was qualitatively reproduced using Mie simulations. In addition, a good agreement was found between the hygroscopic analysis done in the vertical and in time for Case I, where the latter also allowed us to observe the hydration and dehydration of the smoke mixture. Finally, the impact of aerosol hygroscopicity on the Earth's radiative balance has been evaluated using the GAME (Global Atmospheric Model) radiative transfer model. The model showed an impact with an increase in absolute value of 2.4¿W¿m-2 at the surface with respect to the dry conditions for the hygroscopic layer of Case I (smoke mixture).Peer ReviewedPostprint (published version
    • …
    corecore