2,078 research outputs found

    Spectral Efficiency of One-Bit Sigma-Delta Massive MIMO

    Get PDF
    We examine the uplink spectral efficiency of a massive MIMO base station employing a one-bit Sigma-Delta ( \Sigma \Delta ) sampling scheme implemented in the spatial rather than the temporal domain. Using spatial rather than temporal oversampling, and feedback of the quantization error between adjacent antennas, the method shapes the spatial spectrum of the quantization noise away from an angular sector where the signals of interest are assumed to lie. It is shown that, while a direct Bussgang analysis of the \Sigma \Delta approach is not suitable, an alternative equivalent linear model can be formulated to facilitate an analysis of the system performance. The theoretical properties of the spatial quantization noise power spectrum are derived for the \Sigma \Delta array, as well as an expression for the spectral efficiency of maximum ratio combining (MRC). Simulations verify the theoretical results and illustrate the significant performance gains offered by the \Sigma \Delta approach for both MRC and zero-forcing receivers

    Hard breakup of the deuteron into two Delta-isobars

    Full text link
    We study high energy photodisintegration of the deuteron into two Δ\Delta-isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks the quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn→ΔΔpn\rightarrow \Delta\Delta scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn→ΔΔpn\rightarrow \Delta\Delta scattering. We predict that the cross section of the deuteron breakup to Δ++Δ− \Delta^{++}\Delta^{-} is 4-5 times larger than that of the breakup to the Δ+Δ0 \Delta^{+}\Delta^{0} channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ\Delta-isobars are the result of the disintegration of the preexisting ΔΔ\Delta\Delta components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both Δ++Δ− \Delta^{++}\Delta^{-} and Δ+Δ0 \Delta^{+}\Delta^{0} channels to be similar.Comment: 17 pages, 3 figure

    Mean-Reverting Stochastic Processes, Evaluation of Forward Prices and Interest Rates

    Get PDF
    We consider mean-reverting stochastic processes and build self-consistent models for forward price dynamics and some applications in power industries. These models are built using the ideas and equations of stochastic differential geometry in order to close the system of equations for the forward prices and their volatility. Some analytical solutions are presented in the one factor case and for specific regular forward price/interest rates volatility. Those models will also play a role of initial conditions for a stochastic process describing forward price and interest rates volatility. Subsequently, the curved manifold of the internal space i.e. a discrete version of the bond term space (the space of bond maturing) is constructed. The dynamics of the point of this internal space that correspond to a portfolio of different bonds is studied. The analysis of the discount bond forward rate dynamics, for which we employed the Stratonovich approach, permitted us to calculate analytically the regular and the stochastic volatilities. We compare our results with those known from the literature.: Stochastic Differential Geometry, Mean-Reverting Stochastic Processes and Term Structure of Specific (Some) Economic/Finance Instruments

    Quantifying Flexibility Real Options Calculus

    Get PDF
    We expose a real options theory as a tool for quantifying the value of the operating flexibility of real assets. Additionally, we have pointed out that this theory is an appropriated methodology for determining optimal operating policies, and provide an example of successful application of our approach to power industries, specifically to valuate the power plant of electricity. In particular by increasing the volatility of prices will eventually lead to higher assets values.real options, Black-Scholes Approach, Wiener processes, stochastic processes, Quantifying Flexibility, volatility

    QCD Structure of Nuclear Interactions

    Get PDF
    This dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. Through these processes, this work explored the constituent structure of baryons and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. First, hard nucleon-nucleon elastic scattering was studied considering the quark exchange (QE) between the nucleons to be the dominant mechanism of interaction in the constituent picture. It was found that an angular asymmetry exhibited by proton-neutron (pn) elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon's structure instead of a more traditional SU(6) model. The latter yields an asymmetry around 90 deg center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and pn breakup in 3He, and double Delta-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the QE mechanism provides a QCD description of the reaction. Cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In double Delta-isobars production in deuteron breakup, HRM angular distributions for the two double Delta channels were compared to the pn channel and to each other. An important prediction from this study is that the Delta++ Delta- channel consistently dominates Delta+Delta0, which is in contrast with models that unlike the HRM consider a double Delta system in the initial state of the interaction. For such models both channels should have the same strength.Comment: http://digitalcommons.fiu.edu/etd/44

    Proposal of a novel design for linear superconducting motor using 2G tape stacks

    Get PDF
    This paper presents a new design for a su- perconducting linear motor (SLM). This SLM uses stacks of second-generation (2G) superconducting tapes, which are responsible for replacing yttrium barium copper oxide bulks. The proposed SLM may operate as a synchronous motor or as a hysteresis motor, depending on the load force magnitude. A small-scale linear machine prototype with 2G stacks was constructed and tested to investigate the proposed SLM topology. The stator traveling magnetic field wave was represented by several Nd-Fe-B permanent magnets. A relative movement was produced between the stator and the stack, and the force was measured along the displacement. This system was also simulated by the finite element method, in order to calculate the induced currents in the stack and determine the electromagnetic force. The H-formulation was used to solve the problem, and a power law relation was applied to take into account the intrin- sically nonlinearity of the superconductor. The simulated and measured results were in accordance. Simulated re- sults were extrapolated, proving to be an interesting tool to scale up the motor in future projects. The proposed motor presented an estimated force density of almost 500 N/kg, which is much higher than any linear motor.This work was supported in part by the following agencies: CNPq/CAPES/INERGE, CNPq—Ci ˆ encias sem Fronteiras, FAPERJ, Catalan Government 2014- SGR-753, CONSOLIDER Excellence Network MAT2014-56063-C2-1-R and MAT2015-68994-REDC, Eurofusion EU COST ACTIONS MP1201/ MP1014/PPPT-WPMAG 2014, EUROTAPES FP7-NMP-Large-2011- 280432, FORTISSIMO FP7-2013-ICT-609029, and Spanish Govern- ment Agencies—Severo Ochoa Programme Centres of Excellence in R&D. (Corresponding author: Guilherme G. Sotelo.

    Adaptive detection probability for mmWave 5G SLAM

    Get PDF
    In 5G simultaneous localization and mapping (SLAM), estimates of angles and delays of mm Wave channels are used to localize the user equipment and map the environment. The interface from the channel estimator to the SLAM method, which was previously limited to the channel parameters estimates and their uncertainties, is here augmented to include the detection probabilities of hypothesized landmarks, given certain a user location. These detection probabilities are used during data association and measurement update, which are important steps in any SLAM method. Due to the nature of mm Wave communication, these detection probabilities depend on the physical layer signal parameters, including beamforming, precoding, bandwidth, observation time, etc. In this paper, we derive these detection probabilities for different deterministic and stochastic channel models and highlight the importance of beamforming

    Popcorn or Snack? Empirical Analysis of Movie Release Windows

    Get PDF
    • 

    corecore