96 research outputs found

    Return of the Coronavirus: 2019-nCoV

    Get PDF
    The emergence of a novel coronavirus (2019-nCoV) has awakened the echoes of SARSCoV from nearly two decades ago. Yet, with technological advances and important lessons gained from previous outbreaks, perhaps the world is better equipped to deal with the most recent emergent group 2B coronavirus

    Molecular pathology of emerging coronavirus infections

    Get PDF
    Respiratory viruses can cause a wide spectrum of pulmonary diseases, ranging from mild, upper respiratory tract infections to severe and life-threatening lower respiratory tract infections, including the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Viral clearance and subsequent recovery from infection require activation of an effective host immune response; however, many immune effector cells may also cause injury to host tissues. Severe acute respiratory syndrome (SARS) coronavirus and Middle East respiratory syndrome (MERS) coronavirus cause severe infection of the lower respiratory tract, with 10% and 35% overall mortality rates, respectively; however, >50% mortality rates are seen in the aged and immunosuppressed populations. While these viruses are susceptible to interferon treatment in vitro, they both encode numerous genes that allow for successful evasion of the host immune system until after high virus titres have been achieved. In this review, we discuss the importance of the innate immune response and the development of lung pathology following human coronavirus infection

    Pathogenesis of Mouse Adenovirus Type 1 Infection.

    Full text link
    Infection with mouse adenovirus type 1 (MAV-1) results in acute encephalomyelitis that is fatal in susceptible mouse strains. In the brain, MAV-1 only infects endothelial cells. We investigated factors influencing MAV-1-induced encephalitis, including the role of natural killer (NK) cells, the inflammatory response, and viral effects on the blood brain barrier (BBB). MAV-1-infected mice depleted of NK cells had viral loads in the brain similar to those measured in mock-depleted control animals. Control and NK cell-depleted mice were able to clear MAV-1 infection to undetectable levels by 20 days post-infection. These results indicate that NK cells were not important for control of MAV-1 infection in the brain. Brains of MAV-1-infected C57BL/6 mice showed a significant increase in leukocytes, including CD8 T cells. MAV-1 infection of C57BL/6 mice caused a dose-dependent breakdown of the BBB, indicated by dye staining of brain tissues. Breakdown of the BBB correlated with brain viral load, and was primarily due to direct effects of virus infection, because brains were permeable to dye even in the absence of inflammation. Cytotoxic inflammatory cells were not necessary for breakdown of the BBB. A primary mouse brain endothelial cell (pMBEC) culture was used to measure direct effects of virus infection in the absence of an inflammatory response. MAV-1 infection caused a loss of transendothelial electrical resistance, which is necessary for maintaining the BBB. Tight junction proteins claudin-5 and occludin are required for the integrity of the BBB and transendothelial electrical resistance, and both proteins showed reduced cell surface expression on pMBECs following MAV-1 infection. Taken together, these results demonstrate that MAV-1 caused breakdown of the BBB and decreased barrier properties in infected endothelial cells, likely due to altered localization of tight junction proteins. MAV-1-induced inflammation is dependent on the presence of the E3 protein products, but MAV-1-induced breakdown of the BBB did not require E3. No functional role for E3 has yet been described for MAV-1 E3. We developed a tandem affinity purification system to identify cellular proteins that interact with the major E3 protein product, E3 gp11k. Mass spectrometry analysis identified several candidate E3 gp11k-interacting proteins.Ph.D.Microbiology & ImmunologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61720/1/lgralins_2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/61720/2/lgralins_1.pd

    Mouse adenovirus type 1 infection of natural killer cell-deficient mice

    Get PDF
    AbstractNatural killer (NK) cells contribute to the initial nonspecific response to viral infection, and viruses exhibit a range of sensitivities to NK cells in vivo. We investigated the role of NK cells in infection of mice by mouse adenovirus type 1 (MAV-1) using antibody-mediated depletion and knockout mice. MAV-1 causes encephalomyelitis and replicates to highest levels in brains. NK cell-depleted mice infected with MAV-1 showed brain viral loads 8–20 days p.i. that were similar to wild-type control non-depleted mice. Mice genetically deficient for NK cells behaved similarly to wild-type control mice with respect to brain viral loads and survival. We conclude that NK cells are not required to control virus replication in the brains of MAV-1-infected mice

    Coagulation and wound repair during COVID-19

    Get PDF
    While COVID-19 is best known as a respiratory infection, SARS-CoV-2 causes systemic disease manifestations including coagulopathies. Both dysregulated extracellular matrix remodeling pathways and circulating coagulation proteins are hallmarks of severe COVID-19 and often continue after the resolution of acute infection. Coagulation proteins have proven effective as biomarkers for severe disease and anti-coagulants are a mainstay of COVID-19 therapeutics in hospitalized patients. While much knowledge has been gained about the role of clotting pathway activation in COVID-19, much remains to be elucidated in this complex network of signaling pathways

    Attenuation and Restoration of Severe Acute Respiratory Syndrome Coronavirus Mutant Lacking 2'-O-Methyltransferase Activity

    Get PDF
    The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and, more recently, Middle Eastern respiratory syndrome CoV (MERS-CoV) underscores the importance of understanding critical aspects of CoV infection and pathogenesis. Despite significant insights into CoV cross-species transmission, replication, and virus-host interactions, successful therapeutic options for CoVs do not yet exist. Recent identification of SARS-CoV NSP16 as a viral 2′-O-methyltransferase (2′-O-MTase) led to the possibility of utilizing this pathway to both attenuate SARS-CoV infection and develop novel therapeutic treatment options. Mutations were introduced into SARS-CoV NSP16 within the conserved KDKE motif and effectively attenuated the resulting SARS-CoV mutant viruses both in vitro and in vivo. While viruses lacking 2′-O-MTase activity had enhanced sensitivity to type I interferon (IFN), they were not completely restored in their absence in vivo. However, the absence of either MDA5 or IFIT1, IFN-responsive genes that recognize unmethylated 2′-O RNA, resulted in restored replication and virulence of the dNSP16 mutant virus. Finally, using the mutant as a live-attenuated vaccine showed significant promise for possible therapeutic development against SARS-CoV. Together, the data underscore the necessity of 2′-O-MTase activity for SARS-CoV pathogenesis and identify host immune pathways that mediate this attenuation. In addition, we describe novel treatment avenues that exploit this pathway and could potentially be used against a diverse range of viral pathogens that utilize 2′-O-MTase activity to subvert the immune system

    Cell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus

    Get PDF
    A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus

    Evaluation of Serologic and Antigenic Relationships Between Middle Eastern Respiratory Syndrome Coronavirus and Other Coronaviruses to Develop Vaccine Platforms for the Rapid Response to Emerging Coronaviruses

    Get PDF
    Background. Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012, causing severe acute respiratory disease and pneumonia, with 44% mortality among 136 cases to date. Design of vaccines to limit the virus spread or diagnostic tests to track newly emerging strains requires knowledge of antigenic and serologic relationships between MERS-CoV and other CoVs

    Folyóirat vagy gyűjteményes kötet? (Csokonai Diétai Magyar Múzsája)

    Get PDF
    BACKGROUND: The complex interplay between viral replication and host immune response during infection remains poorly understood. While many viruses are known to employ anti-immune strategies to facilitate their replication, highly pathogenic virus infections can also cause an excessive immune response that exacerbates, rather than reduces pathogenicity. To investigate this dichotomy in severe acute respiratory syndrome coronavirus (SARS-CoV), we developed a transcriptional network model of SARS-CoV infection in mice and used the model to prioritize candidate regulatory targets for further investigation. RESULTS: We validated our predictions in 18 different knockout (KO) mouse strains, showing that network topology provides significant predictive power to identify genes that are important for viral infection. We identified a novel player in the immune response to virus infection, Kepi, an inhibitory subunit of the protein phosphatase 1 (PP1) complex, which protects against SARS-CoV pathogenesis. We also found that receptors for the proinflammatory cytokine tumor necrosis factor alpha (TNFα) promote pathogenesis, presumably through excessive inflammation. CONCLUSIONS: The current study provides validation of network modeling approaches for identifying important players in virus infection pathogenesis, and a step forward in understanding the host response to an important infectious disease. The results presented here suggest the role of Kepi in the host response to SARS-CoV, as well as inflammatory activity driving pathogenesis through TNFα signaling in SARS-CoV infections. Though we have reported the utility of this approach in bacterial and cell culture studies previously, this is the first comprehensive study to confirm that network topology can be used to predict phenotypes in mice with experimental validation

    The role of EGFR in influenza pathogenicity: Multiple network-based approaches to identify a key regulator of non-lethal infections

    Get PDF
    Despite high sequence similarity between pandemic and seasonal influenza viruses, there is extreme variation in host pathogenicity from one viral strain to the next. Identifying the underlying mechanisms of variability in pathogenicity is a critical task for understanding influenza virus infection and effective management of highly pathogenic influenza virus disease. We applied a network-based modeling approach to identify critical functions related to influenza virus pathogenicity using large transcriptomic and proteomic datasets from mice infected with six influenza virus strains or mutants. Our analysis revealed two pathogenicity-related gene expression clusters; these results were corroborated by matching proteomics data. We also identified parallel downstream processes that were altered during influenza pathogenesis. We found that network bottlenecks (nodes that bridge different network regions) were highly enriched in pathogenicity-related genes, while network hubs (highly connected network nodes) were significantly depleted in these genes. We confirmed that this trend persisted in a distinct virus: Severe Acute Respiratory Syndrome Coronavirus (SARS). The role of epidermal growth factor receptor (EGFR) in influenza pathogenesis, one of the bottleneck regulators with corroborating signals across transcript and protein expression data, was tested and validated in additional mouse infection experiments. We demonstrate that EGFR is important during influenza infection, but the role it plays changes for lethal versus non-lethal infections. Our results show that by using association networks, bottleneck genes that lack hub characteristics can be used to predict a gene’s involvement in influenza virus pathogenicity. We also demonstrate the utility of employing multiple network approaches for analyzing host response data from viral infections
    • …
    corecore